首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
During the early post-natal period, offspring are vulnerable to environmental insults, such as nutritional and hormonal changes, which increase risk to develop metabolic diseases later in life. Our aim was to understand whether maternal obesity during lactation programs offspring to metabolic syndrome and obese phenotype, in addition we aimed to assess the peripheral glucose metabolism and hypothalamic leptin/insulin signaling pathways. At delivery, female Wistar rats were randomly divided in two groups: Control group (CO), mothers fed a standard rodent chow (Nuvilab); and Diet-induced obesity group (DIO), mothers who had free access to a diet performed with 33% ground standard rodent chow, 33% sweetened condensed milk (Nestlé), 7% sucrose and 27% water. Maternal treatment was performed throughout suckling period. All offspring received standard rodent chow from weaning until 91-day-old. DIO dams presented increased total body fat and insulin resistance. Consequently, the breast milk from obese dams had altered composition. At 91-day-old, DIO offspring had overweight, hyperphagia and higher adiposity. Furthermore, DIO animals had hyperinsulinemia and insulin resistance, they also showed pancreatic islet hypertrophy and increased pancreatic β-cell proliferation. Finally, DIO offspring showed low ObRb, JAK2, STAT-3, IRβ, PI3K and Akt levels, suggesting leptin and insulin hypothalamic resistance, associated with increased of hypothalamic NPY level and decreased of POMC. Maternal obesity during lactation malprograms rat offspring to develop obesity that is associated with impairment of melanocortin system. Indeed, rat offspring displayed glucose dyshomeostasis and both peripheral and central insulin resistance.  相似文献   

3.
4.
Accumulating evidence has shown that maternal malnutrition increases the risk of metabolic disease in the progeny. We previously reported that prenatal exposure to a low-protein diet (LP) leads to mitochondrial dysfunction in pancreatic islets from adult rodent offspring that could relate physiological and cellular alterations due to early diet. We aim to determine whether mitochondrial dysfunction could be a common consequence of prenatal nutritional unbalances. Pregnant Wistar rats received either a global food restriction (GFR), consisting in the reduction by 50% of the normal daily food intake, or a high-fat diet (HF) throughout gestation. GFR or HF diet during pregnancy leads to a lack of increase in insulin release and ATP content in response to glucose stimulation in islets from 3-month-old male and female offspring. These similar consequences originated from impairment in either glucose sensing or glucose metabolism, depending on the type of early malnutrition and on the sex of the progeny. Indeed, the glucose transport across β-cell membrane seemed compromised in female HF offspring, since GLUT-2 gene was markedly underexpressed. Additionally, for each progeny, consequences downstream the entry of glucose were also apparent. Expression of genes involved in glycolysis, TCA cycle and oxidative phosphorylations was altered in GFR and HF rats in a sex- and diet-dependent manner. Moreover, prenatal malnutrition affected the regulators of mitochondrial biogenesis, namely, PPAR coactivator 1 alpha (PGC-1α), since its expression was higher in islets from GFR rats. In conclusion, programming of mitochondrial dysfunction is a consequence of maternal malnutrition, which may predispose to glucose intolerance in the adult offspring.  相似文献   

5.
BACKGROUND : The objective of this study was to assess, in a large data set from Swedish Medical Health Registries, whether maternal obesity and maternal morbid obesity were associated with an increased risk for various structural birth defects. METHODS : The study population consisted of 1,049,582 infants born in Sweden from January 1, 1995, through December 31, 2007, with known maternal weight and height data. Women were grouped in six categories of body mass index (BMI) according to World Health Organization classification. Infants with congenital birth defects were identified from three sources: the Swedish Medical Birth Registry, the Register of Birth Defects, and the National Patient Register. Maternal age, parity, smoking, and year of birth were thought to be potential confounders and were included as covariates in the adjusted odds ratio analyses. RESULTS : Ten percent of the study population was obese. Morbid obesity (BMI ≥ 40) occurred in 0.7%. The prevalence of congenital malformations was 4.7%, and the prevalence of relatively severe malformations was 3.2%. Maternal prepregnancy morbid obesity was associated with neural tube defects OR 4.08 (95% CI 1.87–7.75), cardiac defects OR 1.49 (95% CI 1.24–1.80), and orofacial clefts OR 1.90 (95% CI 1.27–2.86). Maternal obesity (BMI ≥ 30) significantly increased the risk of hydrocephaly, anal atresia, hypospadias, cystic kidney, pes equinovarus, omphalocele, and diaphragmatic hernia. CONCLUSION : The risk for a morbidly obese pregnant woman to have an infant with a congenital birth defect is small, but for society the association is important in the light of the ongoing obesity epidemic. Birth Defects Research (Part A), 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
Sparrow R 《Bioethics》2012,26(4):173-181
A number of advances in assisted reproduction have been greeted by the accusation that they would produce children 'without parents'. In this paper I will argue that while to date these accusations have been false, there is a limited but important sense in which they would be true of children born of a reproductive technology that is now on the horizon. If our genetic parents are those individuals from whom we have inherited 50% of our genes, then, unlike in any other reproductive scenario, children who were conceived from gametes derived from stem cell lines derived from discarded IVF embryos would have no genetic parents! This paper defends this claim and investigates its ethical implications. I argue that there are reasons to think that the creation of such embryos might be morally superior to the existing alternatives in an important set of circumstances.  相似文献   

8.
Objective: The objective was to test the hypothesis that maternal obesity is associated with younger age of offspring's obesity onset. Research Methods and Procedures: We used prospective, nationally representative, longitudinal data collected across Waves I (1995; 12 to 20 years), II (1996; 13 to 20 years), and III (2001; 18 to 28 years) of the National Longitudinal Study of Adolescent Health (N = 14,654; 49% female). Interval regression analysis was used to assess the association between maternal obesity and age at offspring's obesity onset (International Obesity Task Force BMI ≥30 equivalent age‐ and sex‐specific cut‐off points for adolescents and BMI ≥30 for young adults) using self‐reported heights and weights, adjusting for race/ethnicity, sex, parental education, and family income, accounting for complex sampling design. Results: The net effect of having an obese mother varied by race/ethnicity and was associated with a significantly earlier age at obesity onset (p = 0.0001) for whites [β= ?8.1 year, 95% confidence interval (CI), ?9.3; ?6.9)], blacks (β = ?10.8 years, 95% CI, ?12.4; ?9.2), Hispanics (β = ?7.0 years, 95% CI, ?9.2; ?4.8), and Asians (β = ?8.6 years, 95% CI, ?13.3; ?3.9). Earlier obesity onset (<18 years) was associated with increased severity at young adulthood (mean BMI, 36.0 ± 0.3 kg/m2) vs. onset after age 18 (mean BMI, 34.4 ± 0.2 kg/m2; p = 0.0001). There were no sex differences in the association of maternal obesity to age at obesity onset. Conclusions: Having an obese mother was associated with earlier age at obesity onset across all race/ethnic groups, particularly non‐Hispanic blacks. Early obesity onset has important health consequences because of its association with more severe adult obesity.  相似文献   

9.
The impact of maternal obesity on brain monoamine function in adult offspring of dams selectively bred to express diet-induced obesity (DIO) or diet resistance (DR) was assessed by making dams obese or lean during gestation and lactation. After 12 wk on chow and 4 wk on a 31% fat diet, offspring hypothalamic nucleus size and [(3)H]nisoxetine binding to norepinephrine transporters (NET) and [(3)H]paroxetine binding to serotonin transporters (SET) were measured. Offspring of obese DIO dams became more obese than all other groups, but maternal obesity did not alter weight gain in DR offspring (25). Maternal obesity was associated with 10-17% enlargement of ventromedial nuclei (VMN) and dorsomedial nuclei in both DIO and DR offspring. Offspring of obese DIO dams had 25-88% lower NET binding in the paraventricular nuclei (PVN), arcuate nuclei, VMN, and the central amygdalar nuclei, while offspring of obese DR dams had 43-67% higher PVN and 90% lower VMN NET binding and a generalized increase in SET binding across all hypothalamic areas compared with other groups. Thus maternal obesity was associated with alterations in offspring brain monoamine metabolism, which varied as a function of genotype and the development of offspring obesity.  相似文献   

10.

Background and aims

The prevalence of pancreatic adenocarcinoma (PAC) parallels rising rates of obesity and dysmetabolism, a possible link being non-alcoholic fatty pancreas disease (NAFPD). We have recently shown that maternal obesity programmes the development of a dysmetabolic and fatty liver (non-alcoholic fatty liver disease, NAFLD) phenotype in adult offspring. Since the pancreas and liver originate from the same embryonic bud, it is plausible that maternal obesity may similarly programme the development of NAFPD. Our objective was to determine the effect of maternal obesity on development of NAFPD in offspring and ascertain contributions of the intra/extra-uterine periods.

Methods

Female C57BL/6J mice were fed either a standard chow (3% fat, 7% sugar) or a hypercalorific diet (16% fat, 33% sugar) for six weeks prior to mating and throughout pregnancy and lactation. Female offspring were cross-fostered for suckling to dams on the same or opposite diet to yield four groups: offspring of lean suckled by lean dams (n = 6), offspring of obese suckled by obese dams (n = 6), offspring of lean suckled by obese dams (n = 5) and offspring of obese suckled by lean dams (n = 6). All offspring were weaned onto a standard chow diet at 21 days and sacrificed at 3 months post-partum for tissue collection.

Results

Offspring subjected to an adverse suckling environment showed significant increases in body weight, pancreatic triglyceride content, TGF-β, collagen gene expression and SBP at rest along with an enhanced restraint stress response, indicating a dysmetabolic and NAFPD phenotype.

Conclusions

Developmental programming is involved in the pathogenesis of NAFPD and appears to be largely dependent on an adverse extra-uterine environment.  相似文献   

11.
12.
Pregnant guinea pigs were treated with dexamethasone (1 mg/kg) or vehicle on days 40--41, days 50--51, and days 60--61 of gestation. Adult offspring were split into two groups. Group 1 guinea pigs were catheterized, and the hypothalamo-pituitary-adrenal (HPA) axis was tested in basal and activated states. Group 2 guinea pigs were euthanized with no further manipulation. In male offspring, prenatal dexamethasone exposure resulted in a significant reduction in brain-to-body weight ratio. Dexamethasone-exposed male offspring exhibited reduced basal and activated plasma cortisol levels, which was associated with elevated hippocampal mineralocorticoid receptor (MR) mRNA and increased plasma testosterone. In females exposed to glucocorticoids in utero, basal and stimulated plasma cortisol levels were higher in the follicular and early luteal phases of the cycle, but this effect was reversed in the late luteal phase, indicating a significant interaction of sex steroids. In female offspring (at estrus), glucocorticoid receptor mRNA levels were lower in the paraventricular nucleus and pars distalis but higher in the hippocampus in animals exposed to dexamethasone in utero. Hippocampal MR mRNA levels were significantly lower (approximately 50%) than in controls. In conclusion, repeated antenatal glucocorticoid treatment programs HPA function in a sex-specific manner, and these changes are associated with modification of corticosteroid receptor expression in the adult brain and pituitary.  相似文献   

13.
14.
In utero exposure to maternal obesity increases the offspring''s risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND)21. In the current study, we examined systemic and hepatic adaptations in male Sprague-Dawley offspring from lean and obese dams at PND21. Indirect calorimetry revealed decreases in energy expenditure (p<0.001) and increases in RER values (p<0.001), which were further exacerbated by high fat diet (45% kcals from fat) consumption indicating an impaired ability to utilize fatty acids in offspring of obese dams as analyzed by PRCF. Mitochondrial function is known to be associated with fatty acid oxidation (FAO) in the liver. Several markers of hepatic mitochondrial function were reduced in offspring of obese dams. These included SIRT3 mRNA (p = 0.012) and mitochondrial protein content (p = 0.002), electron transport chain complexes (II, III, and ATPase), and fasting PGC-1α mRNA expression (p<0.001). Moreover, hepatic LCAD, a SIRT3 target, was not only reduced 2-fold (p<0.001) but was also hyperacetylated in offspring of obese dams (p<0.005) suggesting decreased hepatic FAO. In conclusion, exposure to maternal obesity contributes to early perturbations in whole body and liver energy metabolism. Mitochondrial dysfunction may be an underlying event that reduces hepatic fatty acid oxidation and precedes the development of detrimental obesity associated co-morbidities such as insulin resistance and NAFLD.  相似文献   

15.
Maternal obesity (MO) has harmful effects on both fetal development and subsequent offspring health. We previously demonstrated that MO enhances collagen accumulation in fetal skeletal muscle, but its impact on mature offspring muscle collagen accumulation is unknown. Ewes were fed either a control diet (Con, fed 100% of NRC nutrient recommendations) or obesogenic diet (OB, fed 150% of NRC nutrient recommendations) from 60 days before conception to birth. All ewes received the Con diet during lactation. Male offspring were euthanized at 2.5 years (mean) and the left Longissimus dorsi (LD) muscle and semitendinosus (ST) muscle were sampled. Collagen concentration increased by 37.8 ± 19.0% (P<0.05) in LD and 31.2 ± 16.0% (P<0.05) in ST muscle of OB compared to Con offspring muscle. Mature collagen cross-linking (pyridinoline concentration) was increased for 22.3 ± 7.4% and 36.3 ± 9.9% (P<0.05) in LD and ST muscle of OB group respectively. Expression of lysyl oxidase, lysyl hydroxylase-2b (LH2b) and prolyl 4-hydroxylase (P4HA) was higher in OB LD and ST muscle. In addition, the expression of metalloproteinases (MMPs) was lower but tissue inhibitor of metalloproteinases (TIMPs) was higher in OB offspring muscle, indicating reduced collagen remodeling. MO enhanced collagen content and cross-linking in offspring muscle, which might be partially due to reduced collagen remodeling. Our observation that the collagen content and cross-linking are enhanced in MO offspring muscle is significant, because fibrosis is known to impair muscle functions and is a hallmark of muscle aging.  相似文献   

16.
Children born to obese mothers are at increased risk for obesity, but the mechanisms behind this association are not fully understood. Our study aimed to investigate differences in the functions encoded by the microbiome of infants at 18 months of age when the transition from early infant-feeding to solid family foods is established. To investigate the impact of maternal prepregnancy body mass index on infants’ gut microbiome, faecal samples from infants born to normoweight (n = 21) and obese mothers (n = 18) were analysed by 16S rRNA gene sequencing and a functional-inference-based microbiome analysis. Our results indicated that Firmicutes was significantly enriched in infants born to normoweight mothers whereas Bacteroidetes was significantly enriched in infants born to obese women. In both microbiomes, the greatest number of genes (>50%) that were assigned a function encoded for proteins involved in “metabolism” among tier 1 KEGG Orthology (KO) categories. At lower KO functional categories, the microbiome of infants born to normoweight mothers was characterized by a significant enrichment in the abundances of “pentose phosphate pathway” (p = 0.037), “lysine biosynthesis” (p = 0.043), “glycerolipid metabolism” (p = 0.042), and “C5-branched dibasic acid metabolism” (p = 0.045). Notably, the microbiome of infants born to obese mothers was significantly enriched in “streptomycin biosynthesis” (p = 0.047), “sulphur metabolism” (p = 0.041), “taurine and hypotaurine metabolism” (p = 0.036), and “lipopolysaccharide biosynthesis” (p = 0.043). In summary, our study showed that maternal prepregnancy obesity may imprint a selective gut microbial composition during late infancy with distinct functional performances.  相似文献   

17.
Low birth weight in humans is associated with an increased risk of cardiovascular disease. Humans with heart failure have a reduced beta-adrenergic response. The aim of this study was to investigate the hemodynamic response to the beta-adrenergic agonist isoproterenol and to identify molecular deficiencies that may be predictive of cardiac failure in a low-birth weight rodent model that develops insulin resistance and type 2 diabetes in adulthood. Wistar rats were fed a control or a low-protein (LP) diet throughout pregnancy and lactation. The resting heart rate and blood pressure of the 3-mo-old male offspring of these dams, termed "control" and "LP" groups, respectively, and their responses to isoproterenol (ISO) infusion were monitored by radiotelemetry. The protein expression of beta-adrenergic signaling components was also measured by Western blot analysis. Basal heart rate was increased in LP offspring (P<0.04), although mean arterial pressure was comparable with controls. Chronotropic effects of ISO were blunted in LP offspring with significant delays to maximal response (P=0.01), a shorter duration of response (P=0.03), and a delayed return to baseline (P=0.01) at the lower dose (0.1 microg.kg-1.min-1). At the higher dose (1.0 microg.kg-1.min-1 ISO), inotropic response was blunted (P=0.03) but quicker (P=0.001). In heart tissue of LP offspring, beta1-adrenergic receptor expression was reduced (P<0.03). beta1-Adrenergic receptor kinase and both stimulatory and inhibitory G protein levels remained unchanged, whereas beta-arrestin levels were higher (P<0.03). Finally, insulin receptor-beta expression was reduced in LP offspring (P<0.012). LP offspring have reduced beta-adrenergic responsiveness and attenuated adrenergic and insulin signaling, suggesting that intrauterine undernutrition alters heart failure risk.  相似文献   

18.
We previously demonstrated that maternal protein restriction (MPR) during pregnancy and lactation led to fetal growth restriction and development of increased visceral adiposity in adult male rat offspring. Here we studied the rate of proliferation and differentiation of adipocyte precursors (preadipocytes) in vitro to investigate whether MPR may permanently program adipocyte growth and development in adult male offspring. Preadipocytes were isolated from visceral adipose tissue of control and MPR offspring at 130 days of age, and cultured under standard conditions. The rate of proliferation was studied by [(3)H]-thymidine incorporation, and the rate of differentiation assessed with the use of biochemical and morphological markers. Although it did not affect the rate of differentiation, MPR increased the rate of preadipocyte proliferation by almost twofold. To ascertain if the increased proliferation was due to persisting in vivo influences or aberrations inherent in the precursor cells, we studied the rate of preadipocyte proliferation in subcultures. We found that the increased rate of proliferation of MPR preadipocytes persisted throughout the first two subcultures, indicative of an inherent abnormality. In addition, we examined the rate of preadipocyte proliferation under reduced serum conditions. We showed that MPR reduced the rate of preadipocyte proliferation to 56 and 35% of the control in the presence of 5 and 2.5% serum, respectively. Taken together, these results demonstrate that MPR permanently programs adipocyte growth and development such that adipocyte precursors derived from MPR offspring replicate excessively under standard culture conditions but exhibit markedly attenuated growth rate under reduced serum conditions.  相似文献   

19.
Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.  相似文献   

20.
Hypothalamic appetite regulators neuropeptide Y (NPY) and pro‐opiomelanocortin (POMC) are modulated by glucose. This study investigated how maternal obesity disturbs glucose regulation of NPY and POMC, and whether this deregulation is linked to abnormal hypothalamic glucose uptake‐lactate conversion. As post‐natal high‐fat diet (HFD) can exaggerate the effects of maternal obesity, its additional impact was also investigated. Female Sprague Dawley rats were fed a HFD (20 kJ/g) to model maternal obesity. At weaning, male pups were fed chow or HFD. At 9 weeks, in vivo hypothalamic NPY and POMC mRNA responses to acute hyperglycemia were measured; while hypothalami were glucose challenged in vitro to assess glucose uptake‐lactate release and related gene expression. Maternal obesity dampened in vivo hypothalamic NPY response to acute hyperglycemia, and lowered in vitro hypothalamic glucose uptake and lactate release. When challenged with 20 mM glucose, hypothalamic glucose transporter 1, monocarboxylate transporters, lactate dehydrogenase‐b, NPY and POMC mRNA expression were down‐regulated in offspring exposed to maternal obesity. Post‐natal HFD consumption reduced in vitro lactate release and monocarboxylate transporter 2 mRNA, but increased POMC mRNA levels when challenged with 20 mM glucose. Overall, maternal obesity produced stronger effects than post‐natal HFD consumption to impair hypothalamic glucose metabolism. However, they both disturbed NPY response to hyperglycemia, potentially leading to hyperphagia.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号