首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tertiary amine local anesthetics (dibucaine, tetracaine, procaine) reversibly affect the morphology of untransformed BALB/3T3 cells and the organization of membrane-associated cytoskeletal elements. In the presence of these drugs cells contract and become rounded in shape with the appearance of numerous surface "blebs." Electron microscope examination of anesthetic-treated cells revealed significant reductions in plasma membrane-associated microtubules and microfilaments and/or their plasma membrane attachment. The relationship of the findings on local anesthetic-induced changes in cellular cytoskeletal systems is discussed in relation to previous proposals on plasma membrane organization and control of cell surface receptor topography and mobility.  相似文献   

2.
Tertiary amine local anesthetics previously have been shown to influence some microtubule-dependent cellular functions. Since several cell secretion processes, including secretion of collagen, have been shown to be inhibited by microtubule-disrupting drugs such as colchicine, we determined whether local anesthetics affect collagen secretion. Six local anesthetics inhibited collagen and non-collagen protein secretion (up to 98%) into the extracellular medium of 3T3 cells and human fibroblasts, an effect apparently independent of influences on proline transport and total protein synthesis. A combination of colchicine and cytochalasin B did not duplicate the effects of local anesthetics. The effects of subsaturating concentrations of colchicine and procaine on secretion were additive, suggesting that both drugs act on the secretory pathway at the level of microtubules, but other effects of the two types of drugs were strikingly different. In comparing the mechanisms of action of colchicine and local anesthetics, it was seen that, in contrast to colchicine, radioactive procaine and lidocaine were slowly transported into 3T3 cells, did not bind to the tubulin-containing TCA-insoluble fraction, and did not bind to purified tubulin in vitro. The fraction of cellular tubulin present as microtubules (47% in normal cells) was determined by measuring tubulin in stabilized, sedimentable microtubules compared to total tubulin, using a [3H]colchicine binding assay. Pretreatment of cells in the cold or with colchicine led to depolymerization of microtubules, but pretreatment with five local anesthetics tested did not. Therefore, in contrast to colchicine, local anesthetics in concentrations that inhibit secretion do not directly interact with or depolymerize microtubules. These drugs, however, do affect a microtubule-dependent process and may do so by detaching the microtubular system from the cell membrane.  相似文献   

3.
Tertiary amine local anesthetics (dibucaine, Tetracaine, procaine, etc.) modify cell morphology, concanavalin A (Con A)-mediated agglutinability and redistribution of Con A receptors. Con A agglutination of untransformed mouse 3T3 cells was enhanced at low concentrations of local anesthetics, and the dynamics of fluorescent-Con A indicated that ligand-induced clustering was increased in the presence of the drugs. In contast, these drugs inhibited Con A-induced receptor capping on mouse spleen cells. These effects can be duplicated by combinations of vinblastine (or colchicine) and cytochalasin B suggesting that local anesthetics act on microtubule cell surface receptor mobility and distribution. It is proposed that tertiary amine local anesthetics displace plasma membrane-bond Ca2+, resulting in disengagement of microfilament systems from the plasma membrane and increased cellular Ca2+ concentration to levels which disrupt microtubular organization. The possible involvement of cellular Ca2+ in cytoskeletal destruction by local anesthetics was investigated utilizing Ca2+-specific ionophores A23187 and X537A. In media containing Ca2+ and cytochalasin B these ionophores caused effects similar to tertiary amine local anesthetics.  相似文献   

4.
Treatment of untransformed mouse and hamster cells with the tertiary amine local anesthetics dibucaine, tetracaine and procaine increases their susceptibility to agglutination by low doses of the plant lectin concanavalin A. Agglutination of anesthetic-treated untransformed cells by low doses of concanavalin A is accompanied by redistribution of concanavalin A receptors on the cell surface to form patches, similar to that occurring in spontaneous agglutination of virus-transformed cells by concanavalin A. Immunofluorescence and freeze-fracture electronmicroscopic observations indicate that local anesthetics per se do not induce this redistribution of concanavalin A receptors but modify the plasma membrane so that receptor redistribution is facilitated on binding of concanavalin A to the cell surface. Fluorescence polarization measurements on the rotational freedom of the membrane-associated probe, diphenylhexatriene, indicate that local anesthetics produce a small increase in the fluidity of membrane lipids. Spontaneous agglutination of transformed cells by low doses of concanavalin A is inhibited by colchicine and vinblastine but these alkaloids have no effect on concanavalin A agglutination of anesthetic-treated cells. Evidence is presented which suggests that local anesthetics may impair membrane peripheral proteins sensitive to colchicine (microtubules) and cytochalasin-B (microfilaments). Combined treatment of untransformed 3T3 cells with colchicine and cytochalasin B mimics the effect of local anesthetics in enhancing susceptibility to agglutination by low doses of concanavalin A. A hypothesis is presented on the respective roles of colchicine-sensitive and cytochalasin B-sensitive peripheral membrane proteins in controlling the topographical distribution of lectin receptors on the cell surface.  相似文献   

5.
Treatment of untransformed mouse and hamster cells with the tertiary amine local anesthetics dibucaine, tetracaine and procaine increases their susceptibility to agglutination by low doses of the plant lectin concanavalin A. Agglutination of anesthetic-treated untransformed cells by low doses of concanavalin A is accompanied by redistribution of concanavalin A receptors on the cell surface to form patches, similar to that occurring in spontaneous agglutination of virus-transformed cells by concanavalin A. Immunofluorescence and freeze-fracture electronmicroscopic observations indicate that local anesthetics per se do not induce this redistribution of concanavalin A receptors but modify the plasma membrane so that receptor redistribution is facilitated on binding of concanavalin A to the cell surface. Fluorescence polarization measurements on the rotational freedom of the membrane-associated probe, diphenylhexatriene, indicate that local anesthetics produce a small increase in the fluidity of membrane lipids. Spontaneous agglutination of transformed cells by low doses of concanavalin A is inhibited by colchicine and vinblastine but these alkaloids have no effect on concanavalin A agglutination of anesthetic-treated cells. Evidence is presented which suggests that local anesthetics may impair membrane peripheral proteins sensitive to colchicine (microtubules) and cytochalasin-B (microfilaments). Combined treatment of untransformed 3T3 cells with colchicine and cytochalasin B mimics the effect of local anesthetics in enhancing susceptibility to agglutination by low doses of concanavalin A. A hypothesis is presented on the respective roles of colchicine-sensitive and cytochalasin B-sensitive peripheral membrane proteins in controlling the topographical distribution of lectin receptors on the cell surface.  相似文献   

6.
Selective enhancement of bleomycin cytotoxicity by local anesthetics   总被引:1,自引:0,他引:1  
The cytotoxic effect of the antitumor antibiotic bleomycin toward cultured mouse FM3A cells was greatly enhanced by exposure of the cells to local anesthetics either before or together with treatment with bleomycin. Such local anesthetics include dibucaine, tetracaine, butacaine, lidocaine and procaine. Dibucaine-induced cell sensitization to bleomycin cytotoxicity produced a decrease in cell survival that became dependent on dose and time of bleomycin treatment. This effect of local anesthetics seems to be selective to bleomycin, since dibucaine and lidocaine do not enhance the cytotoxic effect of other antitumor agents including adriamycin, mitomycin C and cis-diamminedichloroplatinum(II).  相似文献   

7.
Abstract

Local anesthetics are used clinically for peripheral nerve blocks, epidural anesthesia, spinal anesthesia and pain management; large concentrations, continuous application and long exposure time can cause neurotoxicity. The mechanism of neurotoxicity caused by local anesthetics is unclear. Neurite outgrowth and apoptosis can be used to evaluate neurotoxic effects. Mouse neuroblastoma cells were induced to differentiate and generate neurites in the presence of local anesthetics. The culture medium was removed and replaced with serum-free medium plus 20 μl combinations of epidermal growth factor and fibroblast growth factor containing tetracaine, prilocaine, lidocaine or procaine at concentrations of 1, 10, 25, or 100 μl prior to neurite measurement. Cell viability, iNOS, eNOS and apoptosis were evaluated. Local anesthetics produced toxic effects by neurite inhibition at low concentrations and by apoptosis at high concentrations. There was an inverse relation between local anesthetic concentrations and cell viability. Comparison of different local anesthetics showed toxicity, as assessed by cell viability and apoptotic potency, in the following order: tetracaine > prilocaine > lidocaine > procaine. Procaine was the least neurotoxic local anesthetic and because it is short-acting, may be preferred for pain prevention during short procedures.  相似文献   

8.
9.
We have studied the effects of local anesthetics (dibucaine, tetracaine, lidocaine, and procaine) on calcium fluxes through the plasma membrane of synaptosomes. All these local anesthetics inhibit the ATP-dependent calcium uptake by inverted plasma membrane vesicles at concentrations close to those that promote an effective blockade of the action potential. The values obtained for the K0.5 of inhibition of calcium uptake are the following: 23 microM (dibucaine), 0.44 mM (lidocaine), 1.5 mM (procaine), and 0.8 mM (tetracaine). There is a good correlation between these K0.5 values and the concentrations of the local anesthetics that inhibit the Ca2(+)-dependent Mg2(+)-ATPase of these membranes. In addition, except for procaine, these local anesthetics stimulate severalfold the Ca2+ outflow via the Na+/Ca2+ exchange in these membranes. This effect, however, is observed at concentrations slightly higher than those that effectively inhibit the ATP-dependent Ca2+ uptake, e.g., 80-700 microM dibucaine, 2-10 mM lidocaine, and 1-3 mM tetracaine. The results suggest that the Ca2+ buffering of neuronal cytosol is altered by these anesthetics at pharmacological concentrations.  相似文献   

10.
Procaine, strychnine and penicillin selectively depolarized the membrane potential and prolonged the action potential recorded in the lateral but not the medial nociceptive (N) cell in the hirudinid leech Macrobdella decora. In contrast, procaine did not differentiate between medial and lateral N cells in two other hirudinid leeches Hirudo medicinalis and Haemopis marmorata. In these species, the drug equally decreased the amplitude of action potentials in both types of N cells without effecting their resting membrane properties. In the nociceptive neurons of the glossiphoniid leech Haementeria ghilianii which possesses only one type of N cell, procaine produced a depolarization and prolonged the action potential. This finding indicates that the single pair of N cells in Haementeria is of the lateral type. The results suggest that the lateral type N cell in Macrobdella and Haementeria share a unique Na+-dependent conductance which is selectively opened by the local anesthetics procaine and strychnine as well as by penicillin. This conductance is either not present or insensitive to the drugs in the homologous N cells in the two other leech species examined.  相似文献   

11.
Many biochemical effects of local anesthetics are expressed in Ca2+-dependent processes [Volpi M., Sha'afi R.I., Epstein P.M., Andrenyak P.M., and Feinstein M.B. (1981) Proc. Natl. Acad. Sci. USA 78, 795-799]. In this communication we report that local anesthetics (dibucaine, tetracaine, lidocaine, and procaine and the analogue quinacrine) inhibit the Ca2+-dependent and the Mg2+-dependent ATPase activity of rat brain synaptosomes and of membrane vesicles derived from them by osmotic shock. This inhibition is induced by concentrations of these drugs close to their pharmacological doses, and a good correlation between K0.5 of inhibition and their relative anesthetic potency is found. The Ca2+-dependent ATPase is more selectively inhibited at lower drug concentrations. The physiological relevance of these findings is discussed briefly.  相似文献   

12.
Dibucaine, a local anesthetic, is known to induce flagellar excision in Chlamydomonas reinhardtii. Herein, we investigate whether other local anesthetics have similar effects. Tetracaine, bupivacaine, procaine, and lidocaine also caused flagellar excision, although their potencies were lower than that of dibucaine. Bupivacaine, procaine, and lidocaine induced a morphological change in flagella from a rod‐like shape to a disk‐like shape before flagellar excision. Except for lidocaine, these local anesthetics caused cell‐wall shedding in addition to flagellar excision. The anesthetics in order of their median effective concentration (1‐h EC50) for flagellar excision are as follows: dibucaine (1.37 × 10?5 M) < tetracaine (3.16 × 10?5 M) < bupivacaine (4.25 × 10?4 M) < procaine (2.02 × 10?3 M) < lidocaine (3.61 × 10?3 M). In all cases, Ca2+ depletion from the solution inhibited flagellar excision. However, Ca2+‐channel blockers, IP3 receptor antagonists, and inhibitors of phospholipase C did not prevent excision. We suggest that the local anesthetics induce flagellar excision by increasing the fluidity of the flagellar/cell membrane, thereby allowing extracellular Ca2+ to flow into the cell and cause flagellar excision.  相似文献   

13.
E C Kelusky  I C Smith 《Biochemistry》1983,22(25):6011-6017
The interaction of the local anesthetics tetracaine and procaine with multilamellar dispersions of phosphatidylethanolamine has been investigated by using 2H NMR of specifically deuterated anesthetics. Tetracaine was found to partition more strongly than procaine into the lipid. The 2H NMR spectra showed a quadrupole doublet and a narrow line, with the former corresponding to membrane-bound anesthetic and the latter to anesthetic free in solution. The integrated areas of the narrow line and of the doublet correspond to the concentrations of free and bound anesthetic predicted from the Kp values. There is no strong pH dependence for the quadrupole splittings of tetracaine, suggesting a similar depth of penetration into the lipid bilayer over the entire pH range. The data are consistent with a model in which tetracaine acts as a wedge to stabilize the phosphatidylethanolamine bilayer against transition to a hexagonal structure. Procaine is proposed to sit higher in the phosphatidylethanolamine bilayer than does tetracaine. The T1 values were generally shorter in the membrane than in solution, suggesting slower motions, particularly for the aromatic ring of tetracaine.  相似文献   

14.
IL-2 responses are susceptible to suppression by TGFbeta, a cytokine widely implicated in suppression of inflammatory responses and secreted by many different tumor cell types. There have been conflicting reports regarding inhibition of IL-2-induced STAT3 and STAT5 phosphorylation by TGFbeta and subsequent suppression of immune responses. Using TGFbeta-producing multiple myeloma tumor cells we demonstrate that tumor-derived TGFbeta can block IL-2-induced proliferation and STAT3 and STAT5 phosphorylation in T cells. High affinity IL-2R expression was required for the suppression of IL-2 responses as a novel CD25(-) T cell line proliferated and phosphorylated STAT3 when cultured with tumor cells or rTGFbeta1. Activating T cells with IL-15, which does not use the high affinity IL-2R, completely restored the ability of T cells to phosphorylate STAT3 and STAT5 when cultured with tumor cells. IL-15-treated T cells proliferated normally when cocultured with tumor cells or rTGFbeta1, whereas IL-2 responses were consistently inhibited. Preincubation with IL-15 also restored the ability of T cells to respond to IL-2 by phosphorylating STAT3 and STAT5, and proliferating normally in the presence of tumor cells. IL-2 pretreatment did not restore T cell function. IL-15 also restored T cell responses by T cells from multiple myeloma patients, and against freshly isolated bone marrow tumor samples. Thus, activation of T cells by IL-15 renders T cells resistant to suppression by TGFbeta1-producing tumor cells and rTGFbeta1. This finding may be exploited in the design of new immunotherapy approaches that will rely on T cells avoiding tumor-induced suppression.  相似文献   

15.
To assess the genotoxicity of 14 chemical agents used as locally applied agents in dental practice, the ability of these agents to elicit chromosome aberrations was examined using Syrian hamster embryo (SHE) cells. Chromosome aberrations in SHE cells were induced by treatment with three of eight chemical agents used as endodontic medicaments, i.e. ethylenediaminetetraacetic acid (EDTA), formocresol (a mixture of formalin and tricresol), and sodium arsenite. The other five chemical agents, i.e. chloramphenicol, p-chlorophenol, p-phenolsulfonic acid, sodium hypochlorite, and tetracycline hydrochloride exhibited a negative response for chromosome aberrations. Assessment of three dyes used for disclosing dental plaque showed chromosome aberrations induced by basic fuchsin but not by acid fuchsin and erythrosine B. Three local anesthetics, lidocaine hydrochloride, prilocaine hydrochloride, and procaine hydrochloride, were negative for chromosome aberrations. Among the ten chemical agents that exhibited a negative response in the assay, p-chlorophenol, sodium hypochlorite, and erythrosine B induced chromosome aberrations in SHE cells when treated in the presence of exogenous metabolic activation. The percentages of cells with polyploidy or endoreduplication were enhanced by formocresol, sodium arsenite, p-chlorophenol, p-phenolsulfonic acid, sodium hypochlorite, erythrosine B, prilocaine hydrochloride, and procaine hydrochloride in the absence or presence of exogenous metabolic activation. Our results indicate that the chemical agents that had a positive response in the present study are potentially genotoxic to mammalian cells.  相似文献   

16.
The influence of Ca++, several drugs, and pH on the binding of Ca++ by skeletal muscle microsomes was studied in vitro. A mass-law graphic analysis revealed the presence of three distinct species of Ca++-binding sites in the microsomes, and the binding at only one of these sites was antagonized by local anesthetics and quinidine. These drugs also decreased the maximum Ca++-binding capacity of the microsomes. Caffeine and ouabain exerted no effect on the binding at any of the sites. Procaine was also bound by microsomes, and this binding was antagonized by Ca++, which also decreased the maximum procaine-binding capacity of microsomes. The sites that bind procaine and Ca++ are not identical because the maximum-binding capacities of the interacting sites are distinctly different. The influence of pH on the ability of drugs to antagonize Ca++ binding indicates that the displacing activity increases as the percentage of the drug in the nonionized form increases. All of the data obtained in the above studies are consistent with the interpretation that quinidine and local anesthetics of the procaine type noncompetitively antagonize the binding of Ca++ by microsomes. The pharmacological significance of a noncompetitive interaction may be related to the property of local anesthetics and quinidine to increase contractile tension in skeletal muscle rather than to their ability to stabilize the cell membrane.  相似文献   

17.
Twelve G protein-coupled receptors, including chemokine receptors, act as coreceptors and determinants for the cell tropisms of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). We isolated HIV-1 variants from T-cell-line (T)- and macrophage (M)-tropic (i.e., dualtropic) (R5-R3-X4) HIV-1 strains and also produced six HIV-1 mutants carrying single-point amino acid substitutions at the tip of the V3 region of the Env protein of HIV-1. These variants and three mutants infected brain-derived CD4-positive cells that are resistant to M-, T-, or dualtropic (R5, X4, or R5-X4) HIV-1 strains. However, a factor that determines this cell tropism has not been identified. This study shows that primary brain-derived fibroblast-like cell strains, BT-3 and BT-20/N, as well as a CD4-transduced glioma cell line, U87/CD4, which were susceptible to these HIV-1 variants and mutants and the HIV-2ROD strain, expressed mRNA of an orphan G protein-coupled receptor (GPCR), GPR1. When a CD4-positive cell line which was strictly resistant to infection with diverse HIV-1 and HIV-2 strains was transduced with GPR1, the cell line became susceptible to these HIV-1 variants and mutants and to an HIV-2 strain but not to T- or dualtropic HIV-1 strains, and numerous syncytia formed after infection. These results indicate that GPR1 functions as a coreceptor for the HIV-1 variants and mutants and for the HIV-2ROD strain in vitro.  相似文献   

18.
Neural tube defects caused by local anesthetics in early chick embryos   总被引:1,自引:0,他引:1  
H Lee  R G Nagele 《Teratology》1985,31(1):119-127
The effects of local anesthetics (ketamine HCl, lidocaine HCl, procaine HCl, and tetracaine HCl) on stage 8 (four-somite) chick embryos were investigated. In general, embryos responded to drug treatment in a dose-related manner during the first 6 hr of incubation. Concentrations of 500 micrograms/ml (ca. 2 mM) or higher were embryolethal, whereas 100-200 micrograms/ml (0.1-0.8 mM) preferentially inhibited elevation of neural folds. The latter effect was detectable within 3 hr of treatment and was readily reversible. Tetracaine was the most potent among the four local anesthetics tested at any given dose. Compared to controls, cells in the defective neuroepithelium were less elongated and exhibited smoother apical (luminal) surfaces, thinner microfilament bundles, and less intense actin-specific fluorescence. Furthermore, the effects of local anesthetics (100-200 micrograms/ml) on stage 8 chick embryos were not identical to those of cytochalasin D (0.05 micrograms/ml), colchicine (1 microgram/ml), or ionophore A23187 (25 micrograms/ml), although all treatments produced neural tube defects. Overall results suggest that local anesthetics inhibit closure of the neural tube through their disruptive action on the organization and function of microfilaments in developing neuroepithelial cells.  相似文献   

19.
The present study describes the simultaneous determination of seven different kinds of local anesthetics and one metabolite by GC–MS with solid-state extraction: Mepivacaine, propitocaine, lidocaine, procaine (an ester-type local anesthetics), cocaine, tetracaine (an ester-type local anesthetics), dibucaine (Dib) and monoethylglycinexylidide (a metabolite of lidocaine) were clearly separated from each other and simultaneously determined by GC–MS using a DB-1 open tubular column. Their recoveries ranged from 73–95% at the target concentrations of 1.00, 10.0 and 100 μg/ml in plasma, urine and water. Coefficients of variation of the recoveries ranged from 2.3–13.1% at these concentrations. The quantitation limits of the method were approximately 100 ng/ml for monoethylglycinexylidide, propitocaine, procaine, cocaine, tetracaine and dibucaine, and 50 ng/ml for lidocaine and mepivacaine. This method was applied to specimens of patients who had been treated with drip infusion of lidocaine, and revealed that simultaneous determination of lidocaine and monoethylglycinexylidide in the blood and urine was possible.  相似文献   

20.
P58(IPK) is a tetratricopeptide repeat-containing cochaperone that is involved in stress-activated cellular pathways and that inhibits the activity of protein kinase PKR, a primary mediator of the antiviral and antiproliferative properties of interferon. To gain better insight into the molecular actions of P58(IPK), we generated NIH 3T3 cell lines expressing either wild-type P58(IPK) or a P58(IPK) deletion mutant, DeltaTPR6, that does not bind to or inhibit PKR. When treated with double-stranded RNA (dsRNA), DeltaTPR6-expressing cells exhibited a significant increase in eukaryotic initiation factor 2alpha phosphorylation and NF-kappaB activation, indicating a functional PKR. In contrast, both of these PKR-dependent events were blocked by the overexpression of wild-type P58(IPK). In addition, the P58(IPK) cell line, but not the DeltaTPR6 cell line, was resistant to dsRNA-induced apoptosis. Together, these findings demonstrate that P58(IPK) regulates dsRNA signaling pathways by inhibiting multiple PKR-dependent functions. In contrast, both the P58(IPK) and DeltaTPR6 cell lines were resistant to tumor necrosis factor alpha-induced apoptosis, suggesting that P58(IPK) may function as a more general suppressor of programmed cell death independently of its PKR-inhibitory properties. In accordance with this hypothesis, although PKR remained active in DeltaTPR6-expressing cells, the DeltaTPR6 cell line displayed a transformed phenotype and was tumorigenic in nude mice. Thus, the antiapoptotic function of P58(IPK) may be an important factor in its ability to malignantly transform cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号