首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Genetic diversity was studied in 22 populations of the white pine blister rust fungus Cronartium ribicola from natural stands and plantations of eastern white pine, Pinus strobus. Pseudo-allelic frequencies were estimated at each of 7 putative RAPD loci by scoring for presence or absence of amplified fragments in dikaryotic aecidiospores. Analysis of genetic distance between all pairs of populations did not reveal any trend with regard to geographic origin or type of white pine stand. In addition, when hierarchical population structure was analysed, total genetic diversity (H s =0.214) was mostly attributable to diversity within populations (H s =0.199; AMOVA st =0.121, P<0.01). Genetic diversity of populations relative to region of origin (east, centre, and west) or type of stand (natural stands vs plantations) was not significantly different from zero (P>0.10) Nevertheless, a significant proportion of genetic differentiation was found between populations within region or stand type (F st =0.114; sc =0.132, P<0.001). This result indicates that some population structure exists but that it appears to be independent of region of origin or type of stand. At least for 2 populations from white pine plantations, it appears possible that a recent introduction of a limited number of propagules was responsible for low levels of genetic diversity. We interpret these results as meaning that either long-distance dispersal is taking place between populations more than 1000 km apart or that these populations share a common recent ancestor. In addition, we suggest that C. ribicola may still be expanding its distribution by colonizing new plantations.  相似文献   

2.
Photosynthesis-irradiance (P-E) curves are widely used to describe photosynthetic efficiency and potential. Contemporary models assume maximal photosynthetic quantum yield () at low irradiances. But P-E observations made with both oxygen evolution and carbon uptake techniques show that this is not always the case. Using new and published data in conjunction with modeling exercises, we demonstrate that regardless of the mechanism there can be reductions in at low irradiances that are not readily observable using conventional P-E analyses. We also show that analytical errors, such as inaccurate estimation of dark oxygen consumption or carbon uptake, can markedly affect the structure of -E curves with negligible effect on P-E curve structure. Whether from respiration `corrections' or other mechanisms, these deviations in at low light levels from the maximum quantum yield of photosynthesis (max) can lead to significant errors (> 50%) in the estimation of the linear portion of the P-E curve and ultimately max. Non-linear models of P-E, such as the rectangular hyperbola, quadratic, exponential and hyperbolic tangent that are commonly used to estimate the initial slope () of the P-E curve assume that is maximal at low light levels and therefore can err in the estimation of max when is reduced at low light levels. Using a diverse data set of 622 P-E curves with a total of 7623 points, we show that although model skills are high (r 2 = 0.96 ± 0.05, 0.97 ± 0.04, 0.97 ± 0.04 and 0.97 ± 0.04, respectively), a large fraction of the model-predicted max differ by greater than 10% from true max values (91%, 50%, 82% and 46%, respectively). Data from these observations and modeling exercises lead us to suggest that max be determined by directly estimating the true maximum of a -E curve rather than using the more conventional methodology employing the initial slope of the P-E curve.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
Over 70% of North American freshwater mussel species (families Unionidae and Margaritiferidae) are listed as threatened or endangered. Knowledge of the genetic structure of target species is essential for the development of effective conservation plans. Because Ambelma plicata is a common species, its population genetic structure is likely to be relatively intact, making it a logical model species for investigations of freshwater mussel population genetics. Using mtDNA and allozymes, we determined the genotypes of 170+ individuals in each of three distinct drainages: Lake Erie, Ohio River, and the Lower Mississippi River. Overall, within-population variation increased significantly from north to south, with unique haplotypes and allele frequencies in the Kiamichi River (Lower Mississippi River drainage). Genetic diversity was relatively low in the Strawberry River (Lower Mississippi River drainage), and in the Lake Erie drainage. We calculated significant among-population structure using both molecular markers (A.p. Φst = 0.15, θst = 0.12). Using a hierarchical approach, we found low genetic structure among rivers and drainages separated by large geographic distances, indicating high effective population size and/or highly vagile fish hosts for this species. Genetic structure in the Lake Erie drainage was similar to that in the Ohio River, and indicates that northern populations were founded from at least two glacial refugia following the Pleistocene. Conservation of genetic diversity in Amblema plicata and other mussel species with similar genetic structure should focus on protection of a number of individual populations, especially those in southern rivers.  相似文献   

4.
The relationship between CO2 assimilation and electron transport in leaves   总被引:8,自引:0,他引:8  
The inter-relationships between the quantum efficiencies of photosystems I (I) and II (II) and the quantum yield of CO2 fixation % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeA8aMnaaBa% aaleaacaWGdbGaam4tamaaBaaameaacaaIYaaaleqaaaqabaaaaa!3BD3!\[\phi _{CO_2 } \] were investigated in pea (Pisum sativum (L)) leaves with differing rates of photosynthesis using both photorespiratory and non-photorespiratory conditions, and in a leaf of Hedera helix (L) under photorespiratory conditions. The results indicate that under photorespiratory conditions the relationship between % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeA8aMnaaBa% aaleaacaWGdbGaam4tamaaBaaameaacaaIYaaaleqaaaqabaaaaa!3BD3!\[\phi _{CO_2 } \] and both I and II is non-linear and variable. The relationship between I and II under these circumstances remains predominantly linear. Under non-photorespiratory conditions, leaves with a low rate of photosynthesis due to sink limitation exhibit a non-linear relationship between I and II, though the relationship between I and II remains linear suggesting a close relationship between linear electron flow and CO2 fixation. Leaves irradiated at the CO2 compensation point also exhibit a non-linear relationship between I and II. These results suggest that for leaves in air linear electron flow is the predominant source of energy for metabolism. The role of cyclic electron transport is considered when the requirement for the products of linear electron transport is depressed.Abbreviations qp the coefficient for photochemical quenching of chlorophyll fluorescence - exe the quantum efficiency of excitation energy capture by open PS II traps - II the quantum efficiency for electron transport by PS II - I the quantum efficiency (for electron transport) by PS I - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeA8aMnaaBa% aaleaacaWGdbGaam4tamaaBaaameaacaaIYaaaleqaaaqabaaaaa!3BD3!\[\phi _{CO_2 } \] the quantum yield for CO2 fixation (obtained as the gross rate of CO2 fixation divided by the irradiance) - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabgs5aenaaBa% aaleaacqaH8oqBdaWgaaadbaGaamisamaaCaaabeqaaiabgUcaRaaa% aeqaaaWcbeaaaaa!3CB0!\[\Delta _{\mu _{H^ + } } \] trans-thylakoid proton potential difference - PAQF photosynthetically active quantum flux  相似文献   

5.
Amplified fragment length polymorphisms (AFLPs) and microsatellite markers were used to examine genetic variation and divergence in 4 selected strains (DBH, NEH, FMF, and CTS) and 1 wild population (DBW) of the eastern oyster Crassostrea virginica Gmelin. Eighty-six AFLP markers (from 3 primer pairs) and 5 microsatellite loci were used for the analysis of 30 oysters from each of the 5 populations. Microsatellite loci were considerably more variable than AFLPs. The observed heterozygosity ranged from 0.560 to 0.640 across populations for microsatellites, and from 0.186 to 0.207 for AFLPs. Both Fst and PT of microsatellite data and PT statistics of AFLP data revealed significant divergence between all pairs of populations. There was no significant reduction in heterozygosity in all 4 selected strains; however, the number of alleles per locus was considerably lower in the selected strains than in the wild population. Two strains subjected to long-term selection for disease resistance shared frequency shifts at a few loci, which deserve further analysis to determine if they are linked to disease-resistance genes.  相似文献   

6.
Probabilistic models of the cell cycle maintain that cell generation time is a random variable given by some distribution function, and that the probability of cell division per unit time is a function only of cell age (and not, for instance, of cell size). Given the probability density, f(t), for time spent in the random compartment of the cell cycle, we derive a recursion relation for n(x), the probability density for cell size at birth in a sample of cells in generation n. For the case of exponential growth of cells, the recursion relation has no steady-state solution. For the case of linear cell growth, we show that there exists a unique, globally asymptotically stable, steady-state birth size distribution, *(x). For the special case of the transition probability model, we display *(x) explicitly.This work was supported by the National Science Foundation under grants MCS8301104 (to J.J.T.) and MCS8300559 (to K.B.H.), and by the National Institutes of Health under grant GM27629 (to J.J.T.).  相似文献   

7.
Photon yields of oxygen evolution at saturating CO2 were determined for 44 species of vascular plants, representing widely diverse taxa, habitats, life forms and growth conditions. The photonyield values on the basis of absorbed light ( a) were remarkably constant among plants possessing the same pathway of photosynthetic CO2 fixation, provided the plants had not been subjected to environmental stress. The mean a value ±SE for 37 C3 species was 0.106±0.001 O2·photon-1. The five C4 species exhibited lower photon yields and greater variation than the C3 species ( a=0.0692±0.004). The a values for the two Crassulaceanacid-metabolism species were similar to those of C3 species. Leaf chlorophyll content had little influence on a over the range found in normal, healthy leaves. Chlorophyll fluorescence characteristics at 77 K were determined for the same leaves as used for the photon-yield measurements. Considerable variation in fluorescence emission both at 692 nm and at 734 nm, was found 1) among the different species; 2) between the upper and lower surfaces of the same leaves; and 3) between sun and shade leaves of the same species. By contrast, the ratio of variable to maximum fluorescence emission at 692 nm (Fv/FM, 692) remained remarkably constant (The mean value for the C3 species was 0.832±0.004). High-light treatments of shade leaves resulted in a reduction in both a and the Fv/FM, 692 ratio. The extent of the reductions increased with time of exposure to bright light. A linear relationship was obtained when a was plotted against Fv/FM, 692. The results show that determinations of the photon yield of O2 evolution and the Fv/FM, 692 ratio can serve as excellent quantitative measures of photoinhibition of overall photosynthetic energy-conversion system and of photochemistry of photosystem II, respectively. This is especially valuable in field work where it is often impossible to obtain appropriate controls.Abbreviations and symbols CAM Crassulacean acid metabolism - PFD photon flux density (photon fluence rate) - PSI, PSII photosystem I, II - Fo, FM, Fv instantaneous, maximum, variable fluorescence emission - absorptance - a photon yield (absorbed light) - i photon yield (incident light) C.I.W.-D.P.B. Publication No. 923  相似文献   

8.
Soil volumetric water contents, , at –33 kPa potential may vary with soil from 0.06 to 0.70. Because P diffusion depends on , most economic P fertilizer rates required for different soils may require adjusting according to their soil-water relationships. The objective of this study was, after experimentally verifying a mechanistic nutrient uptake model on a series of soils varying in at –33 kPa potential, to use the model to predict labile P levels needed for each of these soils to achieve equal P uptake by maize (Zae mays L.) and verify these predictions. Maize was grown in a pot experiment using four soils having of 0.13, 0.20, 0.26, and 0.40 at –33 kPa each at 0, 200, and 400 mg kg-1 of added P. When root parameters obtained experimentally were used, predicted P uptake with the uptake model agreed with observed P uptake, y=0.99x+9.08 (r2=0.98). When P uptake was plotted vs. soil solution P, Cli, the relation varied with soil. The higher the the lower the Cli needed for equal P uptake. A similar relation was found between P uptake and diffusible soil P, Csi. Differences between the two plots occurred because of differences among soils in buffer power, Csi/Cli. The Csi vs. P added relation was used to calculate differences among soils in the Csi needed to obtain equal P uptake. The Csi values ranged from 1.3 to 4.0 mmol kg–1. The calculated values were used in a second pot experiments to verify the predictions. No significant difference (=0.05) in P uptake occurred. The results of this research indicate that the mechanistic nutrient uptake model can be used to predict the degree of adjustments in Csi needed to obtain the most economic P fertilizer rates among soils varying in .Journal Paper No. 13072. Purdue Univ. Agric. Exp. Stn., West Lafayette, IN 47907.  相似文献   

9.
Summary The DNA homology and adsorption specificity of newly isolated virulent bacteriophages of P. aeruginosa have been studied. On the basis of this analysis all phages were divided into four groups: k, m, mnP78-like and mnF82-like bacteriophages. DNA's of k as well as m phages were shown to possess different restriction patterns although they have an extensive homology. Unlike other groups, k phages were characterized by the presence of T4 DNA ligase-repaired, single-chain breaks.Abbreviations kbp kilobase pairs - EM electron microscopy  相似文献   

10.
The lesser white-fronted goose is a sub-Arctic species with a currently fragmented breeding range, which extends from Fennoscandia to easternmost Siberia. The population started to decline at the beginning of the last century and, with a current world population estimate of 25,000 individuals, it is the most threatened of the Palearctic goose species. Of these, only 30–50 pairs breed in Fennoscandia. A fragment of the control region of mtDNA was sequenced from 110 individuals from four breeding, one staging and two wintering areas to study geographic subdivisions and gene flow. Sequences defined 15 mtDNA haplotypes that were assigned to two mtDNA lineages. Both the mtDNA lineages were found from all sampled localities indicating a common ancestry and/or some level of gene flow. Analyses of molecular variance showed significant structuring among populations ( ST 0.220, P < 0.001). The results presented here together with ecological data indicate that the lesser white-fronted goose is fragmented into three distinctive subpopulations, and thus, the conservation status of the species should be reconsidered.  相似文献   

11.
A comparative study was made of a group ofPseudomonas aeruginosa virulent giant DNA bacteriophages similar to phage KZ in several genetic and phenotypic properties (particle size, particle morphology, genome size, appearance of negative colonies, high productivity, broad spectrum of lytic activity, ability to overcome the suppressing effect of plasmids, absence of several DNA restriction sites, capability of general transduction, pseudolysogeny). We have recently sequenced the phage KZ genome (288 334 bp) [J. Mol. Biol., 2002, vol. 317, pp. 1–19]. By DNA homology, the phages were assigned to three species (represented by phages KZ, Lin68, and EL, respectively) and two new genera (KZ and EL). Restriction enzyme analysis revealed the mosaic genome structure in four phages of the KZ species (KZ, Lin21, NN, and PTB80) and two phages of the EL species (EL and RU). Comparisons with respect to phage particle size, number of structural proteins, and the N-terminal sequences of the major capsid protein confirmed the phylogenetic relatedness of the phages belonging to the KZ genus. The origin and evolution of the KZ-like phages are discussed. Analysis of protein sequences encoded by the phage KZ genome made it possible to assume wide migration of the KZ-like phages (wandering phages) among various prokaryotes and possibly eukaryotes. Since the phage KZ genome codes for potentially toxic proteins, caution must be exercised in the employment of large bacteriophages in phage therapy.  相似文献   

12.
Gordillo FJ  Figueroa FL  Niell FX 《Planta》2003,218(2):315-322
The seaweed Ulva rigida C. Agardh (Chlorophyta) was cultured under two CO2 conditions supplied through the air bubbling system: non-manipulated air and 1% CO2-enriched aeration. These were also combined with N sufficiency and N limitation, using nitrate as the only N source. High CO2 in U. rigida led to higher growth rates without increasing the C fixed through photosynthesis under N sufficiency. Quantum yields for charge separation at photosystem II (PSII) reaction centres (PSII) and for oxygen evolution (O2) decreased at high CO2 even in N-sufficient thalli. Cyclic electron flow around PSII as part of a photoprotection strategy accompanied by decreased antennae size was suspected. The new re-arrangement of the photosynthetic energy at high CO2 included reduced investment in processes other than C fixation, as well as in carbon diverted to respiration. As a result, quantum yield for new biomass-C production (growth) increased. The calculation of the individual quantum yields for the different processes involved allowed the completion of the energy flow scheme through the cell from incident light to biomass production for each of the CO2 and N-supply conditions studied.Abbreviations A total thallus absorptance - Apig absorptance due to pigments - Astr Absorptance due to non-pigmented structures - a* spectrally averaged in vivo absorption cross-section of chlorophyll a - CCM carbon-concentrating mechanism - Chl chlorophyll - DOC dissolved organic carbon - ETR electron transport rate - Fv/Fm optimum quantum yield for PSII charge separation - GP gross O2 evolution rate - kpig specific light absorption coefficient for pigments - kstr specific light absorption coefficient for non-pigmented structures - OP optimum O2 evolution rate - PFR photon fluence rate - POC particulate organic carbon - PS photosystem - qN non-photochemical quenching - qP photochemical quenching - growth quantum yield for new biomass-C production - O2 quantum yield for gross O2 evolution - PSII quantum yield for PSII charge separation  相似文献   

13.
Dry, sandy scrub habitats of the Floridapeninsula represent naturally fragmentedremnants of xeric ecosystems that werewidespread during the Pliocene and earlyPleistocene. This habitat is characterized byhigh endemism, and distribution of genetic andevolutionary diversity among scrub ``islands' isof compelling interest because Florida scrub israpidly disappearing under human development. We compare range-wide diversity inmitochondrial cytochrome b sequences forthree scrub-associated lizards with contrastinglevels of habitat specificity. All speciesshow strong geographic partitioning of geneticdiversity, supporting the hypothesis that scrubfauna is highly restricted by vicariantseparations. The mole skink (Eumecesegregius), the least habitat specific, has thelowest phylogeographic structure among thelizards (st = 0.631). The mtDNAgeneology for E. egregius is not entirelyconcordant with the five recognized subspeciesand supports a link between populations incentral Florida (E. e. lividus) and theFlorida Keys (E.e. egregius) rather thana previously proposed affiliation betweennorthern and southern populations. The Floridascrub lizard (Sceloporus woodi) is themost habitat specific of the lizards and hasthe strongest phylogeographic structure (st = 0.876). The sand skink (Neosepsreynoldsi) falls between the moleskink and scrub lizard in terms of habitatspecificity and phylogeographic structure (st = 0.667). For all three species,networks of mtDNA haplotypes coalesce on twocentral ridges that contain the oldest scrub. The geographic structure and deep evolutionarylineages observed in these species have strongimplications for conservation, includingstrategies for translocation, reserve design,and management of landscape connectivity.  相似文献   

14.
Two bacteriophages (Brb01 and Brb02), lytic toBacteroides ruminicola ssbrevis AR20, were isolated from sewage water. Both phages possessed polyhedral heads and long noncontractile tails, and were classified as Siphoviridae of morphotype B1. Bacteria resistant to phages Brb01 and Brb02 arose following lysis of broth cultures. Survivors of Brb01 infection were capsulated but remained susceptible to Brb02 infection. Survivors of Brb02 infection were noncapsulated and were resistant to attack by both Brb01 and Brb02. Neither phage lysogenized the host. Both phages contained double-stranded DNA, and their restriction endonuclease digestion patterns indicated that the phage genomes were circularly permuted and terminally redundant. Phage Brb01 genome was examined in greater detail and confirmed to be circularly permuted, of size 33 kb, with a terminal redundancy of 2 kb, or 6% of the length of the genome. Circularly permuted genomes in phages of rumen bacteria do not appear to have been reported previously.At present, there is considerable interest in the genetic manipulation of rumen bacteria. The characterization of the phages described herein provides the basic information required for their use in the construction of vectors for the transfer of genetic material.  相似文献   

15.
The approximate range from 100 to 50% of plant-available water in Apopka fine sand (loamy, siliceous, hyperthermic Grossarenic Paleudult) is 0.08–0.04 cm3 cm–3 soil water content () or –5 to –15 kPa of soil water matric potential (). This narrow range of plant-available soil water is extremely dry for most soil water sensors. Knowledge of the soil water retention curves for these soils is important for effective irrigation of crops in fine sand soils of subtropical and tropical regions of the world. The primary objective of this study was to compare sandy soil water retention curves in the field as measured by tensiometer and resistance block values and capacitance sensor . The second objective was to compare these curves to one developed on a Florida fine sand soil using a pressure plate apparatus. Tensiometer and resistance block values were compared to values from capacitance sensors calibrated gravimetrically. The effective range of both tensiometers and resistance sensors in fine sand soils is between –5 and –20 kPa . Soil water potential values for both sensors were within 2 kPa of the mean for each sensor. Change in was similar over the range of 0.04–0.08 cm3 cm–3 . Curves for the two sensors were different by 4 kPa at 0.04 cm3 cm–3. The relationship between and were similar at 10–20, 20–30 and 40–50 cm depths. This was not true for a laboratory determined soil water retention curve for the same soil type. These differences are significant in soils with very low water holding capacities. Differences between laboratory- and field-determined retention curves could be due to a combination of entrapped air in the field soil and/or alteration in bulk density in the laboratory samples.  相似文献   

16.
Jiang  Hua  Xu  Da-Quan 《Photosynthetica》2001,39(3):453-459
To explore the cause of difference in photosynthetic performance between different cultivars of crops, leaf net photosynt rate (P N) and photosystem 2 (PS2) photochemical efficiency (Fv/Fm), apparent quantum yield of carbon assimilation (c), electron transport rate, photophosphorylation activity, etc. were measured in two soybean cultivars, Heinong 42 and Heinong 37. At pod setting and filling, significant differences in P N between them were observed. The former with a higher P N (from 7 to 38 %) had a significantly higher leaf thickness, leaf dry mass/area (LMA), chlorophyll content, soluble protein content, apparent quantum yield of electron transport through PS2 (e), carboxylation efficiency (CE), and ribulose-1,5-bisphosphate carboxylase (RuBPC) activity. The significantly higher P N of Heinong 42 is mainly due to its higher content and activity of RuBPC.  相似文献   

17.
Zheng JS  Xia JH  He SP  Wang D 《Biochemical genetics》2005,43(5-6):307-320
Understanding the population genetic structure is a prerequisite for conservation of a species. The degree of genetic variability characteristic of the mitochondrial DNA control region has been widely exploited in studies of population genetic structure and can be useful in identifying meaningful population subdivisions. To estimate the genetic profile of the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), an endangered freshwater population endemic to China, the complete mtDNA control region was examined in 39 individuals belonging to seven different stocks inhabiting the middle and lower reaches of the Yangtze River. Very low genetic diversity was found (nucleotide diversity 0.0011± 0.0002 and haplotypic diversity 0.65± 0.05). The mtDNA genetic pattern of the Yangtze population appears to indicate a founder event in its evolutionary history and to support the marine origin for this population. Analyses by Fst and Φst yielded statistically significant population genetic structure (Fst = 0.44, P < 0.05; Φst = 0.36, P < 0.05). These results may have significant implications for the management and conservation of the Yangtze finless porpoise in the future.  相似文献   

18.
Wheat leaves were exposed to light treatments that excite preferentially Photosystem I (PS I) or Photosystem II (PS II) and induce State 1 or State 2, respectively. Simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PS II and PS I photochemistry during State transitions. State transitions were found to be associated with changes in the efficiency with which an absorbed photon is transferred to an open PS II reaction centre, but did not correlate with changes in the quantum efficiencies of PS II photochemistry or CO2 assimilation. Studies of the phosphorylation status of the light harvesting chlorophyll protein complex associated with PS II (LHC II) in wheat leaves and using chlorina mutants of barley which are deficient in this complex demonstrate that the changes in the effective antennae size of Photosystem II occurring during State transitions require LHC II and correlate with the phosphorylation status of LHC II. However, such correlations were not found in maize leaves. It is concluded that State transitions in C3 leaves are associated with phosphorylation-induced modifications of the PS II antennae, but these changes do not serve to optimise the use of light absorbed by the leaf for CO2 assimilation.Abbreviations Fm, Fo, Fv maximal, minimal and variable fluorescence yields - Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qP photochemical quenching - A820 light-induced absorbance change at 820 nm - PS I, PS II relative quantum efficiencies of PS I and PS II photochemistry - CO 2 quantum yield of CO2 assimilation  相似文献   

19.
Saccharomyces cerevisiae CBS 426 was grown in continuous culture in a defined medium with a mixture of glucose and ethanol as carbon source. Growth on ethanol as the sole carbon source was only possible after the addition of a small amount of glutamic acid. The flows of glucose, ethanol, oxygen, carbon dioxide and biomass to and from the system were measured and a model for the growth of the yeast on the carbon sources constructed. The model is shown to allow independent estimation of YATP and P/O. YATP is not independent of the substrate used, but the amount of ATP used in the production of biomass from the monomers is approximately the same for growth on ethanol and on glucose.Nomenclature C chemical state vector - Ci component of the chemical state vector (C-mol) - Cx biomass present in the system (C-mol biomass) - H2 reduction equivalents (NAD(P)H + H+ and FADH2) - k the amount of ATP required in the production of 1 C-mol of biomass from the monomers (mol ATP/C-mol biomass) - mATP maintenance requirement for ATP (mol ATP/C-mol biomass·h) - P/O (=), efficiency of the oxidative phosphorylation (mol ATP/atom O) - r vector of reaction rates - ri component of the vector of reaction rates (C-mol/h) - rATP rate of ATP production (mol ATP/h) - rx rate of biomass production (C-mol biomass/h) - YATP YATP growth yield on ATP (C-mol biomass/mol ATP) - (YATP)max maximum growth yield on ATP - stoichiometry matrix - P/O - vector of the flows to the system - s flow of glucose to the system (C-mol glucose/h) - o flow of oxygen to the system (mol O2/h) - c flow of carbon dioxide to the system (mol CO2/h) - x flow of biomass to the system (C-mol biomass/h) - e flow of ethanol to the system (C-mol ethanol/h) - w flow of water produced during metabolism (mol H2O/h)  相似文献   

20.
The dynamics of coupled biological oscillators can be modeled by averaging the effects of coupling over each oscillatory cycle so that the coupling depends on the phase difference between the two oscillators and not on their specific states. Average phase difference theory claims that mode locking phenomena can be predicted by the average effects of the coupling influences. As a starting point for both empirical and theoretical investigations, Rand et al. (1988) have proposed d/dt= — K sin ), with phase-locked solutions =arcsin( /K), where is the difference between the uncoupled frequencies and K is the coupling strength. Phase-locking was evaluated in three experiments using an interlimb coordination paradigm in which a person oscillates hand-held pendulums. was controlled through length differences in the left and right pendulums. The coupled frequency c was varied by a metronome, and scaled to the eigenfrequency v of the coupled system K was assumed to vary inversely with c. The results indicate that: (1) and K contribute multiplicatively to (2) =0 or = regardless of K when =0; (3) 0 or regardless of when K is large (relative to ); (4) results (1) to (3) hold identically for both in phase and antiphase coordination. The results also indicate that the relevant frequency is c/v rather than c. Discussion high-lighted the significance of confirming =arcsin(/K) for more general treatments of phase-locking, such as circle map dynamics, and for the 11 phase-entrainment which characterizes biological movement systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号