首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytochrome P-450Ch7 alpha (cholesterol 7 alpha-hydroxylase) catalyzes the first and rate-limiting step in the conversion of cholesterol to bile acids in mammalian liver. The properties of this cytochrome P-450 (P-450) form were studied in rat hepatic microsomal preparations in comparison to those of several well characterized constitutive and xenobiotic-inducible rat hepatic P-450s. Administration of the bile acid-sequestering resin cholestyramine [4% (w/w) in the diet] to male or female rats maintained on a reverse light cycle led to a 10- to 15-fold induction of P-450Ch7 alpha activity relative to untreated, standard light cycle controls. By contrast, the levels of four hepatic steroid hormone hydroxylating P-450 enzymes, designated 2a, 2c, 3, and PB-4 [Waxman, D.J. (1984) J. Biol. Chem. 259, 15481-15490], were not significantly affected by cholestyramine treatment. Antibody inhibition experiments established that P-450Ch7 alpha is immunochemically distinct from nine other rat hepatic P-450s, including P-450 3, a highly regio- and stereoselective steroid hormone 7 alpha-hydroxylase. P-450Ch7 alpha was shown to be selectively inactivated by micromolar concentrations of the disulfide-containing reagents disulfiram (Antabuse) and 2,2'-dithiopyridine. This inactivation was readily reversed upon incubation with 2-mercaptoethylamine, suggesting the presence of a highly reactive thiol group at the active site of P-450Ch7 alpha. These findings demonstrate that P-450Ch7 alpha corresponds to a unique P-450 enzyme exhibiting inductive, biochemical, immunochemical, and regulatory properties distinct from those of nine well-characterized rat hepatic P-450 forms.  相似文献   

2.
Hepatic microsomal cytochromes P-450f, P-450g, P-450h, and P-450i have recently been purified to electrophoretic homogeneity from untreated adult rats and identified as distinct isozymes [Ryan et al. (1984) J. Biol. Chem. 259, 1239-1250; Haniu et al. (1984) Arch. Biochem. Biophys. 235, 304-311]. In Ouchterlony double-diffusion plates, as well as enzyme-linked immunosorbent assays and Western blots, purified immunoglobulin G (IgG) raised in rabbits against cytochromes P-450f or P-450g show strong cross-reactions with the heterologous protein, indicating apparent partial identity. Anti-P-450f and anti-P-450g also show strong cross-reactivity with cytochromes P-450h and P-450i but not with five previously characterized rat hepatic cytochromes, P-450 (i.e., P-450a-P-450e), indicating a high degree of immunochemical and structural relatedness among cytochromes P-450f, P-450g, P-450h, and P-450i.  相似文献   

3.
The influence of age, sex, and hormonal status on the expression of eight rat hepatic cytochrome P-450 (P-450) isoenzymes was evaluated by both catalytic and immunochemical methods. The male specificity of P-450 2c(male)/UT-A, the major microsomal steroid 16 alpha-hydroxylase of uninduced rat liver [Waxman, D.J. (1984) J. Biol. Chem. 259, 15481-15490], was shown to reflect its greater than or equal to 30-fold induction at puberty in male but not in female rats. The female specificity of P-450 2d(female)/UT-I was shown to reflect its developmental induction in females. P-450 PB-2a/PCN-E was shown to mediate greater than or equal to 85% of microsomal steroid 6 beta-hydroxylase activity; the male specificity of this P-450 largely reflects its developmental suppression in female rats. Neonatal gonadectomy and hormonal replacement experiments established that neonatal androgen "imprints" or programs the male rat for developmental induction of P-450 2c(male)/UT-A, for maintenance of P-450 PB-2a/PCN-E, and for suppression of P-450 2d(female)/UT-I, all of which occur in male rats at puberty. By contrast, the expressed levels of P-450 isoenzymes PB-1/PB-C, 3/UT-F, PB-4/PB-B, ISF-G, and beta NF-B were mostly unaffected by the rats' age, sex, and hormonal status. Studies on the sex specificity of P-450 induction established that the response of these latter five isoenzymes to the P-450 inducers phenobarbital, beta-naphthoflavone, pregnenolone-16 alpha-carbonitrile, and isosafrole is qualitatively and quantitatively equivalent in females as in males.  相似文献   

4.
Maturation of the precursor forms of bovine cholesterol side-chain cleavage cytochrome P-450 (P-450SCC) and 11 beta-hydroxylase cytochrome P-450 (P-450(11)beta) was investigated using mitochondria from bovine corpus luteum. The results show that both precursors, whose synthesis was directed by bovine adrenocortical RNA, can be imported and proteolytically processed to their corresponding mature forms by bovine corpus luteal mitochondria, even though P-450(11)beta is not expressed in this tissue. Furthermore, the efficiency of processing of pre-P-450(11)beta by corpus luteal mitochondria is similar to that of pre-P-450SCC, an endogenous enzyme of these mitochondria. However, the P-450(11)beta precursor is not processed by mitochondria from a nonsteroidogenic tissue (heart), a result observed previously for the P-450SCC precursor (M. F. Matocha and M. R. Waterman (1984) J. Biol. Chem. 259, 8672-8678). This discriminatory processing of pre-P-450(11)beta by heterologous mitochondria suggests that the precursor forms of P-450SCC and P-450(11)beta are processed via a common pathway in steroidogenic mitochondria and that this pathway is absent in nonsteroidogenic mitochondria.  相似文献   

5.
We have isolated cDNA clones of the mRNA for prostaglandin omega-hydroxylase (cytochrome P-450p-2) (Yamamoto, S., Kusunose, E., Ogita, K., Kaku, M., Ichihara, K., and Kusunose, M. (1984) J. Biochem. (Tokyo) 96, 593-603) in rabbit lung by using synthetic oligonucleotides as probes. The cDNA sequence contains an open reading frame of 1,470 nucleotides, the first 9 amino acids of which correspond to the residues 17-25 of cytochrome P-450p-2 determined from protein analysis. The predicted primary structure contains amino acid sequences of 23 tryptic fragments of cytochrome P-450p-2 and the deduced amino acid composition is in agreement with that determined from the purified protein. The complete polypeptide, including residues 1-16, contains 506 amino acids with a calculated molecular weight of 58,515. Cytochrome P-450p-2 shared 74% amino acid similarity with rat hepatic lauric acid omega-hydroxylase (cytochrome P-450LA omega) (Hardwick, J.P., Song, B.-J., Huberman, E., and Gonzalez, F. J. (1987) J. Biol. Chem. 262, 801-810), whereas it showed less than 25% similarity to other forms of cytochrome P-450, indicating that the two cytochrome P-450s constitute a unique cytochrome P-450 gene family. DNA blot analysis of the total genomic DNA of rabbits suggest the presence of several genes or gene-like DNA sequences which cross-hybridized with the cloned cDNA. RNA blot analysis showed that progesterone treatment increased the amount of mRNA hybridizable to the cDNA by about 100-fold in the lung of rabbits as compared with the basal level without the treatment. This high level of the mRNA was also observed in the lung of pregnant rabbits.  相似文献   

6.
Administration of pregnenolone-16 alpha-carbonitrile (PCN) to adult female rats caused a 2-fold increase in total liver microsomal cytochrome P-450 along with 5-7-fold increases in four in vitro monooxygenase activities considered diagnostic for the major PCN-inducible cytochrome P-450 isozyme. However, upon administration of chloramphenicol to PCN-treated rats, these monooxygenase activities could be resolved into three groups. Thus, the ability of the microsomes to convert triacetyloleandomycin to a metabolite that forms a spectral complex with the reduced heme iron was decreased by 80% by chloramphenicol, whereas only a 50% decrease was observed in the rate of conversion of (R)-warfarin to its 9,10-dehydro metabolite and in the rate of 6 beta-hydroxylation of androstenedione. More strikingly, the 10-hydroxylation of (R)-warfarin was actually enhanced 2-fold by the chloramphenicol treatment. Fractionation studies were carried out on liver microsomes from PCN-treated adult male rats, and two highly purified cytochromes P-450, referred to as PCNa and PCNb, were recovered. PCNb was found to be identical in the sequence of the first 15 amino acid residues with a PCN-inducible isozyme, the complete amino acid sequence of which has recently been deduced in another laboratory [Gonzalez, F. J., Nebert, D. W., Hardwick, J. P., & Kasper, C. B. (1985) J. Biol. Chem. 260, 7435-7441]. The other isozyme, PCNa, differed in amino acid sequence in three of the first 15 positions from PCNb. Upon immunoblot analysis, polyclonal antibodies raised to PCNb also recognized PCNa. Thus, the PCN-inducible family of rat liver cytochrome P-450 comprises at least two separate proteins.  相似文献   

7.
Two-dimensional gel electrophoresis of hepatic microsomes from phenobarbital-treated animals was used to analyze electrophoretic/regulatory polymorphisms for cytochromes P-450b, P-450e, P-450g, and P-450h in 28 inbred strains of rat. Previous studies with outbred rats revealed the existence of four electrophoretic variants for P-450b, two for P-450e, and three for P-450h as well as two regulatory alleles for P-450g. With the exception of one allozymic form of P-450h, all of these alleles as well as a novel (null) allele for P-450e were found to be homozygous in at least two of the inbred strains tested. Eight phenotypes for combinations of these four cytochromes P-450 were observed. Inbred strains were identified that can be used in studies on the structure/function of unique cytochrome P-450-allozymes and in genetic crosses to map the four distinct cytochrome P-450 genes.This work was supported by National Institutes of Health Biomedical Research Support Grant SO7RR07208.  相似文献   

8.
Metabolism of 32-hydroxy-24,25-dihydrolanosterol (lanost-8-ene-3 beta,32-diol), a posturated intermediate of the 14 alpha-demethylation (removal of C-32) of 24,25-dihydrolanosterol (lanost-8-en-3 beta-ol), by a reconstituted system consisting of yeast cytochrome P-450 which catalyzes lanosterol 14 alpha-demethylation (cytochrome P-45014DM) (Yoshida, Y., and Aoyama, Y. (1984) J. Biol. Chem. 259, 1655-1660 and Aoyama, Y., Yoshida, Y., and Sato, R. (1984) J. Biol. Chem. 259, 1661-1666) and NADPH-cytochrome P-450 reductase was studied. The reconstituted system converted both 32-hydroxy-24,25-dihydrolanosterol and 24,25-dihydrolanosterol to 4,4-dimethyl-5 alpha-cholesta-8,14-dien-3 beta-ol, the 14 alpha-demethylated product of the latter. The metabolism of these compounds was inhibited by a low concentration of ketoconazole which is a potent cytochrome P-45014DM inhibitor. Affinity of cytochrome P-45014DM for 32-hydroxy-24,25-dihydrolanosterol was about 20 times higher than for 24,25-dihydrolanosterol and the cytochrome metabolized the former about 4 times faster than the latter under the experimental conditions. Spectral analysis suggested that the 32-hydroxyl group of 32-hydroxy-24,25-dihydrolanosterol interacted with the heme iron of the oxidized cytochrome and this interaction might support the high affinity of this compound for the cytochrome. These lines of evidence indicate that 32-hydroxy-24,25-dihydrolanosterol is the intermediate of the 14 alpha-demethylation of 24,25-dihydrolanosterol by cytochrome P-45014DM. It is also clear that the cytochrome catalyzes further metabolism of the 32-hydroxylated intermediate to the 14 alpha-demethylated product with higher efficiency than the 32-hydroxylation of the substrate. Cytochrome P-45014DM is thus classified as lanosterol C14-C32 lyase.  相似文献   

9.
Rat hepatic cytochrome P-450g is a male-specific hemoprotein found at significant levels only in adult animals. In the present study, two-dimensional gel electrophoretic and immunochemical methods were used to study a polymorphism of this isozyme and its ontogenetic regulation. Inbred ACI/Hsd and WF/Hsd rats were found to express high and low levels of cytochrome P-450g, respectively. F1 hybrids of these strains showed additive inheritance for this trait and the responsible gene was found to be autosomal. Cytochrome P-450g and another male-specific form of the enzyme, cytochrome P-450h, were characterized by a similar time-course for their ontogenetic expressions. However, unlike cytochrome P-450g, the level of cytochrome P-450h was indistinguishable in hepatic microsomes from mature ACI/Hsd and WF/Hsd rats. Considering these results, we tentatively conclude that the gene regulating the level of cytochrome P-450g is Cis-acting.  相似文献   

10.
Treatment of rats with phenobarbital increases the hepatic concentration of P-450p, a form of cytochrome P-450 believed to be controlled primarily by a mechanism that stereospecifically recognizes glucocorticoids like dexamethasone and anti-glucocorticoids like pregnenolone-16 alpha-carbonitrile [Schuetz, E.G., & Guzelian, P.S. (1984) J. Biol. Chem. 259, 2007]. To test the possibility that phenobarbital induces P-450p indirectly by increasing the availability of endogenous glucocorticoids in the liver, we added phenobarbital and phenobarbital-like inducers to primary monolayer cultures of adult rat hepatocytes incubated in serum-free medium without glucocorticoids and found stimulated de novo synthesis of P-450p measured as increased incorporation of [3H]leucine into immunoprecipitable P-450p protein. With some of the inducers, notably the organochlorine pesticides chlordane and trans-nonachlor, there was a greater accumulation of P-450p measured on quantitative immunoblots than could be accounted for by the increase in P-450p synthesis. "Pulse-chase" experiments confirmed that these compounds significantly lengthen the half-life of P-450p up to 60 h as compared to the values in control (11 h) or dexamethasone-treated (10 h) cultures. Treatment of rats with chlordane, trans-nonachlor, or other cyclodiene organochlorine pesticides confirmed that these agents increase the concentration of P-450p in liver microsomes analyzed on immunoblots of two-dimensional electrophoretic gels. The time courses of induction in trans-nonachlor-treated rats of P-450p protein and of P-450PB proteins induced by phenobarbital were similar as were the amounts of P-450PB mRNA and P-450p mRNA measured by hybridization to cloned cDNA probes. However, analysis of structure-activity relationships among polychlorinated biphenyls revealed that isomers with two ortho chlorinated positions maximally induced P-450PB whereas isomers with three and four ortho chlorines maximally induced P-450p in rats and in hepatocyte culture, respectively. We conclude that P-450p is induced by the phenobarbital class of inducers through direct contact with the hepatocytes involving decreased degradation of the protein and stimulation of its synthesis in a manner similar but not identical with that of P-450PB.  相似文献   

11.
S L Wagner  W L Dean  R D Gray 《Biochemistry》1987,26(8):2343-2348
Hydroxylation of acetanilide catalyzed by purified cytochrome P-450LM4 and NADPH-cytochrome P-450 reductase was reconstituted with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). The optimum rate of production of 4-hydroxyacetanilide was observed between 3 and 7 mM CHAPS and was about half that with 0.05 mM dilauroylglyceryl-3-phosphocholine (di-12-GPC). At higher detergent concentrations, hydroxylase activity decreased until at 15-20 mM CHAPS the system was inactive. The effect of CHAPS on the state of aggregation of P-450LM4 and on interaction between the cytochrome and P-450 reductase alone and under turnover conditions was investigated by ultracentrifugation. At 4 mM CHAPS, P-450LM4 was hexameric to heptameric (Mr 369,000). Neither reductase nor reductase plus acetanilide and NADPH altered the state of P-450LM4 aggregation, suggesting that a stable 1:1 P-450/reductase complex did not form under turnover conditions. Replacing CHAPS with 0.05 mM di-12-GPC resulted in formation of heterogeneous P-450 oligomers (Mr greater than 480,000). At CHAPS concentrations where substrate hydroxylation did not occur (15 and 22 mM), P-450LM4 was shown by sedimentation equilibrium measurements to be dimeric and monomeric, respectively. P-450 reductase was shown to reduce monomeric P-450LM4 in the presence of NADPH. Thus, the dependence of hydroxylase activity on [CHAPS] may be related to the state of aggregation of the cytochrome. An apparent correlation between P-450 aggregation state and NADPH-supported hydroxylation was also observed with phenobarbital-inducible P-450LM2 in the presence of detergents [Dean, W.L., & Gray, R.D. (1982) J. Biol. Chem. 257, 14679-14685; Wagner, S.L., Dean, W.L., & Gray, R.D. (1984) J. Biol. Chem. 259, 2390-2395].  相似文献   

12.
Rat hepatic cytochrome P-450 form RLM2 is a testosterone 15 alpha-hydroxylase reported to be male-specific on the basis of purification studies (Jansson, I., Mole, J., and Schenkman, J. B. (1985) J. Biol. Chem. 260, 7084-7093). The sex dependence, developmental regulation, xenobiotic induction, and hormonal control of P-450 RLM2 expression were studied using P-450 form-specific immunochemical and catalytic assays. Polyclonal antibodies raised to rat hepatic P-450 3 (P-450 gene IIA1) were found to cross-react strongly with P-450 RLM2, but not with 10 other rat P-450 forms, suggesting that P-450 3 and P-450 RLM2 are highly conserved in primary structure. Western blotting of liver microsomes under conditions where P-450s 3 and RLM2 are resolved electrophoretically revealed that P-450 RLM2 is markedly induced at puberty in male rats, with no protein detected (less than or equal to 5% of adult male levels) in adult females or immature animals of either sex. A similar developmental dependence was observed for hepatic microsomal testosterone 15 alpha-hydroxylase activity, which was found to be catalyzed primarily by P-450 RLM2. P-450 RLM2 was resistant to induction by several xenobiotics and in the case of phenobarbital and beta-naphthoflavone, was suppressed by 50-60%. Studies on the steroid hormonal regulation of P-450 RLM2 revealed that its adult male-specific expression is imprinted (programmed) in response to neonatal testosterone exposure. Ovariectomy studies demonstrated that suppression by estrogen does not contribute significantly to the absence of P-450 RLM2 in adult female rats. Although the male-specific developmental induction of P-450 RLM2 in response to neonatal testosterone is strikingly similar to that of P-450 2c (testosterone 2 alpha/16 alpha-hydroxylase; gene IIC11), P-450 RLM2 expression is not dependent on the pulsatile pituitary growth hormone secretion required for P-450 2c synthesis. Rather, hypophysectomy of adult male rats increased P-450 RLM2 and its associated testosterone 15 alpha-hydroxylase activity by 50-100%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The complete covalent structure of a cytochrome P-450, form 4, isolated from liver microsomes of beta-naphthoflavone-induced rabbits was determined. The S-carboxyamidomethylated protein was cleaved with cyanogen bromide, endoproteinase Lys-C, and trypsin before and after succinylation. Selected peptides from CNBr digests of alkylated rabbit cytochrome P-450 forms 3a and 3c were also isolated and sequenced. Form 4 exhibited microheterogeneity due to the presence of several truncated forms. The existence of multiple NH2-terminal residues for form 4 was confirmed by the isolation and sequence analysis of the corresponding tryptic peptides. The predominant form contained 514 residues, corresponding to Mr 58,030. A peptide having Gly-232 and Gln-246 replaced by Ser and Asn residues, respectively, was also found in the isozyme preparation investigated here. The amino acid sequences of form 4 and selected peptide sequences from forms 3a and 3c were compared with the primary structures of forms 2 and 3b (previously determined in this laboratory). This comparison identified some 90 invariant residues. A cysteinyl residue at position 456, earlier reported as the heme-binding cysteine 436 (Heineman, F. S., and Ozols, J. (1982) J. Biol. Chem. 257, 14988-14999), was also present in forms 4, 3a, and 3c. Other single invariant residues identified were form 4/forms 2,3b, Trp-132/121, and His 270/252. The tyrosyl residues at positions 71/62 and 365/348 were also invariant. The latter is present in the "conserved segment" of the protein, residues 363/346 to 375/359, and may be involved in the substrate binding of cytochrome P-450. Also a lysyl residue, formerly identified by other laboratories to be involved in the electron transfer between the reductase and cytochrome P-450 form 2, was invariant in all five species. This lysyl residue corresponds to Lys-402 in form 4 or Lys-384 in the other forms.  相似文献   

14.
15.
R M Shayiq  N G Avadhani 《Biochemistry》1989,28(19):7546-7554
We have previously shown that phenobarbital (PB) increases hepatic mitochondrial cytochrome P-450 (P-450) content and also the ability to metabolize hepatocarcinogen, aflatoxin B1 [Niranjan, B. G., Wilson, N. M., Jefcoate, C. R., & Avadhani, N. G. (1984) J. Biol. Chem. 259, 12495-12501]. In the present study, we have purified a mitochondrial-specific P-450 with an apparent molecular mass of 52 kdaltons (termed P-450mt3) from PB-induced rat liver using a combination of hydrophobic and ion exchange column chromatography procedures. Polyclonal antibody to P-450mt3 failed to cross-react with P-450mt1 and P-450mt2 purified from beta-naphthoflavone- (BNF) induced rat liver mitochondria. Furthermore, P-450mt3 shows an N-terminal amino acid sequence (Ala-Ile-Pro-Ala-Ala-Leu-Arg-Thr-Asp) different from those of both P-450mt1 and P-450mt2, as well as microsomal P-450b. The polyclonal antibody to P-450mt3 cross-reacted with a P-450 of comparable size purified from uninduced mitochondria. These two isoforms, however, showed difference with respect to catalytic properties and amino acid composition. In vitro reconstitution experiments show that P-450mt3 can actively metabolize diverse substrates including (dimethylamino)antipyrine, benzphetamine, and aflatoxin B1 but shows a low vitamin D3 25-hydroxylase activity. The mitochondrial P-450 from uninduced livers, on the other hand, shows relatively high [229 pmol min-1 (nmol of P-450)-1] vitamin D3 25-hydroxylase activity but a considerably lower ability for aflatoxin B1 metabolism and no detectable activity for (dimethylamino)antipyrine and benzphetamine metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
K Devore  N Harada  M Negishi 《Biochemistry》1985,24(20):5632-5637
Cytochrome P-450 (I-P-450(16) alpha), which is associated with phenobarbital-induced testosterone 16 alpha-hydroxylation activity, was purified from livers of phenobarbital-treated female 129/J mice on the basis of the specific hydroxylation activity in fractions eluted from columns of octylamino-Sepharose 4B, hydroxylapatite, DEAE-Bio-Gel A, and isobutyl-Sepharose 4B. The specific cytochrome P-450 content of the purified I-P-450(16) alpha fraction was 12.4 nmol/mg of protein, and it had an apparent molecular weight of 54K. The specific activity of reconstituted testosterone 16 alpha-hydroxylation activity with the purified I-P-450(16) alpha fraction was 6-8 nmol min-1 (nmol of cytochrome P-450)-1. Rabbit antibody raised against the purified I-P-450(16) alpha fraction inhibited nearly 100% of the 16 alpha-hydroxylation activity in liver microsomes of phenobarbital-treated female 129/J mice but did not affect hepatic microsomal 16 alpha-hydroxylation activity of untreated male and female 129/J mice at all. In hepatic microsomes of phenobarbital-treated male 129/J mice, 70% of the 16 alpha-hydroxylation activity, at most, was catalyzed by I-P-450(16) alpha, and the residual 30% of the activity was catalyzed by C-P-450(16) alpha. The increase of I-P-450(16) alpha by phenobarbital was due to de novo synthesis of I-P-450(16) alpha, and this induction was not sexually regulated in 129/J mice. Anti-C-P-450(16) alpha [Harada, N., & Negishi, M. (1984) J. Biol. Chem. 259, 12285-12290] did not inhibit the 16 alpha-hydroxylation catalyzed by I-P-450(16) alpha; thus, I-P-450(16) alpha and C-P-450(16) alpha are immunochemically distinct isozymes of testosterone 16 alpha-hydroxylase.  相似文献   

17.
Bovine adrenodoxin in the reduced form has been measured by one- and two-dimensional 1H NMR spectroscopy. By comparing the spectrum of reduced adrenodoxin with that of the oxidized protein, resonances have been assigned for the aromatic residues. The spin-lattice relaxation time for the resonances due to histidine residues was found to depend on the reduction state of adrenodoxin. The distance from the paramagnetic center is calculated by using the Solomone-Bloembergen equation. The resonances from Tyr-82 and Ala-81 show large chemical shift changes upon reduction of adrenodoxin. The conformational change of adrenodoxin manifested by chemical shift difference between reduced and oxidized forms is found in the sequence around Tyr-82 and Ala-81. Modification with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at Glu-74, Asp-79, and Asp-86 inhibited the interaction with both adrenodoxin reductase and cytochrome P-450scc (Lambeth, D. J., Geren, L. M., and Millett, F. (1984) J. Biol. Chem. 259, 10025-10029; Geren, L. M., O'Brien, P., Stonehuerner, J., and Millett, F. (1984) J. Biol. Chem. 259, 2155-2160). Thus, the sequence of these amino acids was assigned to the interaction site with the redox partners. The present 1H NMR investigation of adrenodoxin demonstrates that a conformational change upon reduction of the iron-sulfur cluster occurs in the sequence of negatively charged amino acids that is a putative site for interaction with redox partners. This could offer the structural basis of the electron transfer mechanism in which adrenodoxin functions as a mobile electron carrier.  相似文献   

18.
In the present study we show that monospecific antibody against cytochrome P-450a completely inhibits testosterone 7 alpha-hydroxylation in hepatic microsomes of untreated male or female rats or rats of either sex treated with dexamethasone. These data are in contrast with those of K. Nagata et al. (1987, J. Biol. Chem. 262, 2787-2793) who recently reported that an antibody prepared against cytochrome P-450a completely inhibited testosterone 7 alpha-hydroxylase activity in microsomes from untreated or 3-methylcholanthrene-treated rats but only inhibited 50% of the activity in microsomes from dexamethasone-treated rats. They proposed that dexamethasone treatment of rats induced another testosterone 7 alpha-hydroxylase in rat liver. The discrepancy in the two sets of data was due, at least in part, to the use of a chromatography system by Nagata et al. that is incapable of resolving a number of testosterone metabolites. Dexamethasone treatment of rats leads to a marked increase in the production of several testosterone metabolites, including 15 beta-hydroxytestosterone which is cochromatographic with 7 alpha-hydroxytestosterone in their chromatography system. Our results indicate that cytochrome P-450a accounts for all of the testosterone 7 alpha-hydroxylase activity in microsomes from dexamethasone-treated rats, and that testosterone 7 alpha-hydroxylation continues to be a useful marker for monitoring cytochrome P-450a in rat hepatic microsomes.  相似文献   

19.
Cytochrome P-450j has been purified to electrophoretic homogeneity from hepatic microsomes of adult male rats administered ethanol and compared to the corresponding enzyme from isoniazid-treated rats. The enzymes isolated from ethanol- and isoniazid-treated rats have identical chromatographic properties, minimum molecular weights, spectral properties, peptide maps, NH2-terminal sequences, immunochemical reactivities, and substrate selectivities. Both preparations of cytochrome P-450j have high catalytic activity in aniline hydroxylation, butanol oxidation, and N-nitrosodimethylamine demethylation with turnover numbers of 17-18, 37-46, and 15 nmol product/min/nmol of P-450, respectively. A single immunoprecipitin band exhibiting complete identity was observed when the two preparations were tested by double diffusion analysis with antibody to isoniazid-inducible cytochrome P-450j. Ethanol- and isoniazid-inducible rat liver cytochrome P-450j preparations have also been compared and contrasted with cytochrome P-450 isozyme 3a, the major ethanol-inducible isozyme from rabbit liver. The rat and rabbit liver enzymes have slightly different minimum molecular weights and somewhat different peptide maps but similar spectral, catalytic, and immunological properties, as well as significant homology in their NH2-terminal sequences. Antibody to either the rat or rabbit isozyme cross-reacts with the heterologous enzyme, showing a strong reaction of partial identity. Antibody against isozyme 3a specifically recognizes cytochrome P-450j in immunoblots of induced rat liver microsomes. Aniline hydroxylation catalyzed by the reconstituted system containing cytochrome P-450j is markedly inhibited (greater than 90%) by antibody to the rabbit protein. Furthermore, greater than 85% of butanol or aniline metabolism catalyzed by hepatic microsomes from ethanol- or isoniazid-treated rats is inhibited by antibody against isozyme 3a. Results of antibody inhibition studies suggest that cytochrome P-450j is induced four- to sixfold by ethanol or isoniazid treatment of rats. All of the evidence presented in this study indicates that the identical cytochrome P-450, P-450j, is induced in rat liver by either isoniazid or ethanol, and that this isozyme is closely related to rabbit cytochrome P-450 isozyme 3a.  相似文献   

20.
Treatment of mouse Leydig cell cultures with luteinizing hormone (LH) or with 8-bromo-cAMP (8-Br-cAMP) for 5 days elicited a dose- and time-dependent increase in the microsomal cytochrome P-450 enzyme activities. 17 alpha-Hydroxylase and C17-20 lyase as well as a parallel increase in testosterone production. Reduction of the oxygen tension from 19 to 1% resulted in a greater increase in enzyme activity. Induction of microsomal cytochrome P-450 activities was 35 to 50% greater with 8-Br-cAMP than with LH and the increase in C17-20 lyase activity was 4-fold greater than that of 17 alpha-hydroxylase. Maximal induction of P-450 enzyme activities was observed between 3 and 5 days of continual treatment with 8-Br-cAMP or LH. Removal of 8-Br-cAMP from the culture medium inhibited any further increase in C17-20 lyase activity and testosterone production. The role of protein synthesis in the induction process was investigated by incubating Leydig cell cultures with and without cycloheximide between 24 and 48 h of treatment with 8-Br-cAMP. Cycloheximide completely inhibited the induction of C17-20 lyase activity and the increase in testosterone production. After removal of the inhibitor, cultures responded in a manner that paralleled induction in cultures that had not been treated with cycloheximide. In both cases, a 24-h lag period occurred prior to an increase in cytochrome P-450 activity. These data suggest that the increase in microsomal cytochrome P-450 activities represents an increase in enzyme synthesis and, furthermore, that reduction of oxygen tension decreases degradation of newly synthesized Leydig cell microsomal cytochrome P-450 activities as recently reported (Quinn, P.G., and Payne, A.H. (1984) J. Biol. Chem. 259, 4130-4135).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号