首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most genes for antibiotic resistance present in soil microbes remain unexplored because most environmental microbes cannot be cultured. Only recently has the identification of these genes become feasible through the use of culture-independent methods. We screened a soil metagenomic DNA library in an Escherichia coli host for genes that can confer resistance to kanamycin, gentamicin, rifampin, trimethoprim, chloramphenicol, or tetracycline. The screen revealed 41 genes that encode novel protein variants of eight protein families, including aminoglycoside acetyltransferases, rifampin ADP-ribosyltransferases, dihydrofolate reductases, and transporters. Several proteins of the same protein family deviate considerably from each other yet confer comparable resistance. For example, five dihydrofolate reductases sharing at most 44% amino acid sequence identity in pairwise comparisons were equivalent in conferring trimethoprim resistance. We identified variants of aminoglycoside acetyltransferases and transporters that differ in the specificity of the drugs for which they confer resistance. We also found wide variation in protein structure. Two forms of rifampin ADP-ribosyltransferases, one twice the size of the other, were similarly effective at conferring rifampin resistance, although the short form was expressed at a much lower level. Functional metagenomic screening provides insight into the large variability in antibiotic resistance protein sequences, revealing divergent variants that preserve protein function.  相似文献   

2.
The dihydrofolate reductase encoded by plasmid pUK1123, which confers only a moderate level of trimethoprim resistance on its host, has been isolated and characterized. This enzyme, designated type IV, differs markedly from all previously described plasmid dihydrofolate reductases. It has a relatively high molecular weight of 46,700 as measured by gel filtration and, unlike previous plasmid dihydrofolate reductases, its synthesis is induced in the presence of increasing concentrations of trimethoprim. It is only slightly resistant to trimethoprim but is competitively inhibited by this drug with an inhibitor binding constant of 63 nM. In addition, the enzyme has a relatively low affinity for the substrate, dihydrofolate (Km = 37 microM). This is the first report of a plasmid trimethoprim resistance mechanism resulting from the induced synthesis of a large molecular weight dihydrofolate reductase which is only slightly resistant to trimethoprim. The possible origins of the type IV enzyme are discussed.  相似文献   

3.
Six different R-factors conferring trimethoprim resistance had been isolated from a variety of sources. The trimethoprim-resistant dihydrofolate reductases (EC 1.5.1.3) from strains containing these R-factors were purified by ammonium sulphate precipitation and DEAE-cellulose ion-exchange chromatography. The enzymes showed no significant differences in molecular weight, pH profile, substrate profile, heat sensitivity, inhibition profile and Michaelis-Menten kinetics. There was, however, considerable variation in the specific activity of these enzymes in the same bacterial host. When two Escherichia coli trimethoprimsensitive dihydrofolate reductases were examined as controls, considerable differences between their properties and those of the enzymes mediated by R-factors were detected. The data suggest that one trimethoprim resistance gene could be spreading through the bacterial population, possibly situated on a transposon.  相似文献   

4.
Methotrexate (MTX)-resistant mutants of the parasitic protozoan Leishmania have been used as models for the mechanism and genetic basis of drug resistance in trypanosomatids and other cells. Three resistance mechanisms to MTX, a dihydrofolate reductase inhibitor, have been described in Leishmania: decreased uptake and accumulation of MTX via the folate/MTX transporter, amplification and overexpression of the dihydrofolate reductase-thymidylate synthase gene, and extrachromosomal amplification of H region DNA. We have now identified hmtxr as the H region gene conferring MTX resistance using a transfection-based approach. Data base searches show that the predicted HMTXr protein is related to members of the polyol dehydrogenase/carbonyl reductase family of aldoketo reductases, whose substrates include polyols, quinones, steroids, prostaglandins, fatty acids, and pterins. We therefore propose that HMTXr is also an oxidoreductase and suggest several biochemical mechanisms of resistance in Leishmania that could be exploited in the design of parasite-specific inhibitors.  相似文献   

5.
Vectors for cloning promoter-DNA fragments were derived from pTP 30-5 which was constructed in our previous work (M. Iwakura et al. (1982) J. Biochem. 91, 1205). The selection was based on the expression of trimethoprim resistance of transformed bacteria in which the enhancement of dihydrofolate reductase production was directed by the cloned promoter. A linear relationship between the content of dihydrofolate reductase and the strength of trimethoprim resistance was observed. It is suggested that the promoter activities can be estimated by trimethoprim resistance without measuring the enzyme activities.  相似文献   

6.
A strategy devised to isolate a gene coding for a dihydrofolate reductase from Thermus thermophilus DNA delivered only clones harboring instead a gene (the T. thermophilus dehydrogenase [DH(Tt)] gene) coding for a dihydropteridine reductase which displays considerable dihydrofolate reductase activity (about 20% of the activity detected with 6,7-dimethyl-7,8-dihydropterine in the quinonoid form as a substrate). DH(Tt) appears to account for the synthesis of tetrahydrofolate in this bacterium, since a classical dihydrofolate reductase gene could not be found in the recently determined genome nucleotide sequence (A. Henne, personal communication). The derived amino acid sequence displays most of the highly conserved cofactor and active-site residues present in enzymes of the short-chain dehydrogenase/reductase family. The enzyme has no pteridine-independent oxidoreductase activity, in contrast to Escherichia coli dihydropteridine reductase, and thus appears more similar to mammalian dihydropteridine reductases, which do not contain a flavin prosthetic group. We suggest that bifunctional dihydropteridine reductases may be responsible for the synthesis of tetrahydrofolate in other bacteria, as well as archaea, that have been reported to lack a classical dihydrofolate reductase but for which possible substitutes have not yet been identified.  相似文献   

7.
This paper is concerned with the physiological role(s) of T4 phage-coded dihydrofolate reductase, which functions both in DNA precursor metabolism and as a virion protein. (i) We have detected enzyme activity in noninfectious particles produced under restrictive conditions by gene 11 mutants. This supports the conclusion of Kozloff et al. (J. Virol. 16:1401-1408, 1975) that the protein lies in the baseplate, covered by the gene 11 protein. (ii) We have obtained further evidence for virion dihydrofolate reductase as the target for neutralizing activity of T4 dihydrofolate reductase antiserum and as a determinant of the heat lability of the virion. This derives from our observation that the reductases specified by T4B and T4D differ in several properties. (iii) We have investigated several anomalous properties of T4 mutants bearing deletions that reportedly extend into or through the frd gene, which codes for dihydrofolate reductase. Evidence is presented that the deletions in fact do not extend through frd. These strains direct the synthesis of material that cross-reacts with antiserum to homogeneous dihydrofolate reductase. Moreover, they are all quite sensitive to the phage-neutralizing effects of this antiserum. In addition, they are restricted by several of the hospital strains, wild-type strains of Escherichia coli supplied by the California Institute of Technology group. (iv) We have attempted to detect dihydrofolate reductase among early-synthesized proteins present in T4 tails. Two such proteins are seen, one of which is evidently the gene 25 product and one that is a bacterial protein. Quantitation of our electrophoretic technique has allowed determination of the number of molecules of some T4 tail components present per virion. (v) Finally, we have compared the T4 dihydrofolate reductase with the corresponding enzyme specified by two plasmids conferring resistance to trimethoprim (Skold and Widh, J. Biol. Chem. 249:4324-4325, 1974). Although the enzymes are similar in some properties, they differ in several important respects, including immunological activity.  相似文献   

8.
The trimethoprim-resistant dihydrofolate reductase associated with the R plasmid R388 was isolated from strains that over-produce the enzyme. It was purified to apparent homogeneity by affinity chromatography and two consecutive gel filtration steps under native and denaturing conditions. The purified enzyme is composed of four identical subunits with molecular weights of 8300. A 1100 bp long DNA segment which confers resistance to trimethoprim was sequenced. The structural gene was identified on the plasmid DNA by comparing the amino acid composition of the deduced proteins with that of the purified enzyme. The gene is 234 bp long and codes for 78 amino acids. No homology can be found between the deduced amino acid sequence of the R388 dihydrofolate reductase and those of other prokaryotic or eukaryotic dihydrofolate reductases. However, it differs in only 17 positions from the enzyme associated with the trimethoprim-resistance plasmid R67.  相似文献   

9.
R-factor trimethoprim resistance mechanism: an insusceptible target site   总被引:16,自引:0,他引:16  
R-factor R388 increases the resistance of Escherichia coli to trimethoprim by 10,000 fold, and mediates the synthesis of an addional dihydrofolate reductase that is less susceptible to trimethoprim by a similar order of magnitude. The dihydrofolate reductase conferred by the R-factor was of a larger molecular weight than the wild-type enzyme and exhibited a different pattern of response to trimethoprim inhibition. This is thought to be the first example of an R-factor conferring an altered target site mechanism of resistance to a chemotherapeutic agent.  相似文献   

10.
Several independent, spontaneous rifampin-resistant mutants of Bacillus subtilis were isolated and found to have an increased resistance to trimethoprim, an inhibitor of dihydrofolate reductase. This increased resistance in the rif mutants was the result of a specific threefold increase in the activity of dihydrofolate reductase, since six other enzymes examined remained unchanged. This increased level of dihydrofolate reductase and the trimethoprim resistance were cotransformed (100%) with the rif marker. These results suggest that the RNA polymerase is altered in its recognition of the gene that specifies dihydrofolate reductase.  相似文献   

11.
Halobacterium volcanii mutants that are resistant to the dihydrofolate reductase inhibitor trimethoprim contain DNA sequence amplifications. This paper describes the cloning and nucleic acid sequencing of the amplified DNA sequence of the H. volcanii mutant WR215. This sequence contains an open reading frame that codes for an amino acid sequence that is homologous to the amino acid sequences of dihydrofolate reductases from different sources. As a result of the gene amplification, the trimethoprim-resistant mutant overproduces dihydrofolate reductase. This enzyme was purified to homogeneity using ammonium sulfate-mediated chromatographies. It is shown that the enzyme comprises 5% of the cell protein. The amino acid sequence of the first 15 amino acids of the enzyme fits the coding sequence of the gene. Preliminary biochemical characterization shows that the enzyme is unstable at salt concentrations lower than 2 M and that its activity increases with increase in the KCl or NaCl concentrations.  相似文献   

12.
R-Plasmids from a number of trimethoprim-resistant Escherichia coli and Citrobacter sp. were studied after transfer to E. coli K12 hosts. Each was found to specify a dihydrofolate reductase which was resistant to trimethoprim and Methotrexate, and which could be completely separated from the host chromosomal enzyme by gel filtration. Two distinct types of R-plasmid dihydrofolate reductases were identified. Type I enzymes, typified by the R483 enzyme previously described (Sk?ld, O., and Widh, A. (1974) J. Biol. Chem. 249, 4324-4325), are synthesized in amounts severalfold higher than the chromosomal enzyme. The 50% inhibitory concentrations (I50) of trimethoprim, Methotrexate, and aminopterin are increased several thousandfold over the corresponding values for the chromosomal enzyme. Type II R-plasmid dihydrofolate reductases are synthesized in about the same amount, or less, as the chromosomal enzyme, but are practically several hundredfold higher than those for the type I enzymes. Both types of R-plasmid dihydrofolate reductase showed little difference from the chromosomal enzyme in the binding of dihydrofolate, NADPH, folic acid, and 2,4-diaminopyrimidine.  相似文献   

13.
A 2.0-kb fragment of Bacillus subtilis 168 chromosomal DNA has been shown to contain both the dihydrofolate reductase (dfrA) and thymidylate synthase B (thyB) genes. In addition to the close proximity of dfrA and thyB, the expression of these genes seems to be regulated coordinately. Mutations that map near or within the dfrA gene resulted in coordinate increases in both dihydrofolate reductase and thymidylate synthase B activities. Also, when trimethoprim, a specific inhibitor of dihydrofolate reductase and thymidylate synthase B activities. Also, when trimethoprim, a specific inhibitor of dihydrofolate reductase, was added to growing cells, both dihydrofolate reductase and thymidylate synthase B activities increased coordinately.  相似文献   

14.
The type IIIb dihydrofolate reductase, a novel plasmid-encoded enzyme recently identified in Shigella sonnei, has been shown to have some similar biochemical properties to the type IIIa dihydrofolate reductase which was first identified in New Zealand in 1979. However, the type IIIb enzyme has a Ki for trimethoprim of 0.4 microM, and a pI of 5.35 (as compared to 19 nM and 6.1 for the type IIIa); both these results suggest that it is a different enzyme from the prototype type IIIa. The type IIIb dihydrofolate reductase was purified by methotrexate agarose affinity chromatography, yielding a pure protein as determined by HPLC. Automatic amino acid analysis of the purified enzyme showed it to be distinct from all other known plasmid-encoded dihydrofolate reductases and quite different from the type IIIa enzyme. The purified enzyme was examined by SDS-PAGE, which revealed that the type IIIb dihydrofolate reductase was a monomeric protein of Mr 17,200.  相似文献   

15.
Integrons are unique natural systems for capturing and spreading the antibiotic resistance genes among Gram-negative bacteria. Gene transfer into small genomes and into plasmids is via site-specific recombination. Integrons act as receptors of antibiotic resistance cassettes. There are known more than 50 cassettes conferring resistance to beta-lactams, aminoglycosides, trimethoprim, chloramphenicol, streptomycin, and other antibiotics. The structure of integrons and of gene cassettes are described and the mechanisms of capture, mobilization, and expression of cassettes considered.  相似文献   

16.
Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8–7.2 μM and for NADPH 6.5–8.0 μM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10–20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was about 10 000 times less effective inhibitor of dihydrofolate reductase than amethopterin. The cell extract of the AMr strain possessed a folate reductase activity three times higher than that of the sensitive strain. The activities of other folate-related enzymes like thymidylate synthethase and 10-formyltetra-hydrofolate synthetase (formate: tetrahydrofolate ligase (ADP)-forming), EC 6.3.4.3) were similar in the three strains studied.  相似文献   

17.
Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16–23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.  相似文献   

18.
Glutathione synthetase from Escherichia coli B showed amino acid sequence homology with mammalian and bacterial dihydrofolate reductases over 40 residues, although these two enzymes are different in their reaction mechanisms and ligand requirements. The effects of ligands of dihydrofolate reductase on the reaction of E. coli B glutathione synthetase were examined to find resemblances in catalytic function to dihydrofolate reductase. The E. coli B enzyme was potently inhibited by 7,8-dihydrofolate, methotrexate, and trimethoprim. Methotrexate was studied in detail and proved to bind to an ATP binding site of the E. coli B enzyme with K1 value of 0.1 mM. The homologous portion of the amino acid sequence in dihydrofolate reductases, which corresponds to the portion coded by exon 3 of mammalian dihydrofolate reductase genes, provided a binding site of the adenosine diphosphate moiety of NADPH in the crystal structure of dihydrofolate reductase. These analyses would indicate that the homologous portion of the amino acid sequence of the E. coli B enzyme provides the ATP binding site. This report gives experimental evidence that amino acid sequences related by sequence homology conserve functional similarity even in enzymes which differ in their catalytic mechanisms.  相似文献   

19.
The dihydrofolate reductase gene from Candida albicans has been cloned and partially characterized. A genomic bank from C. albicans strain 10127/5 was constructed in Escherichia coli and screened for trimethoprim resistance. A plasmid pMF1, carrying the resistance marker was isolated and characterized by restriction mapping and Southern blotting. Cells harbouring pMF1 were as sensitive as the parental cells to a wide spectrum of antibacterial agents, except for trimethoprim; the dihydrofolate reductase activity from these cells was trimethoprim resistant.  相似文献   

20.
The dihydrofolate reductase from Mycobacterium phlei was purified and characterized; it has an Mr of 15 000 and a pI of 4.8. It is competitively inhibited by both methotrexate and trimethoprim, although the affinity is less than for other bacterial dihydrofolate reductases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号