首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lois LM  Lima CD  Chua NH 《The Plant cell》2003,15(6):1347-1359
Post-translational modification of proteins by small polypeptides, such as ubiquitin, has emerged as a common and important mechanism for regulating protein function. Small ubiquitin-like modifier (SUMO) is a small protein that is structurally related to but functionally different from ubiquitin. We report the identification and functional analysis of AtSUMO1, AtSUMO2, and AtSCE1a as components of the SUMO conjugation (sumoylation) pathway in Arabidopsis. In yeast-two hybrid assays, AtSUMO1/2 interacts specifically with a SUMO-conjugating enzyme but not with a ubiquitin-conjugating enzyme. AtSCE1a, the Arabidopsis SUMO-conjugating enzyme ortholog, conjugates SUMO to RanGAP in vitro. AtSUMO1/2 and AtSCE1a colocalize at the nucleus, and AtSUMO1/2 are conjugated to endogenous SUMO targets in vivo. Analysis of transgenic plants showed that overexpression of AtSUMO1/2 does not have any obvious effect in general plant development, but increased sumoylation levels attenuate abscisic acid (ABA)-mediated growth inhibition and amplify the induction of ABA- and stress-responsive genes such as RD29A. Reduction of AtSCE1a expression levels accentuates ABA-mediated growth inhibition. Our results suggest a role for SUMO in the modulation of the ABA signal transduction pathway.  相似文献   

2.
Sumoylation, a post-translational regulatory process in plants   总被引:1,自引:0,他引:1  
The reversible conjugation of the small ubiquitin-related modifier (SUMO) peptide to protein substrates (sumoylation) is emerging as a major post-translational regulatory process in animals and other eukaryotes, including plants. Database annotation, and genetic and biochemical analyses indicate that components of the SUMO conjugation and deconjugation systems are conserved in plants such as Arabidopsis, rice, tomato, and Medicago. Specifically, Arabidopsis AtSUMO1/2 and SUMO E2 conjugation enzyme AtSCE1a are implicated in abscisic acid (ABA) responses and the ubiquitin-like SUMO protease 1 (ULP1) AtESD4 in flowering time regulation. The AtSIZ1 SUMO E3 ligase functions in phosphate starvation responses, cold tolerance, basal thermotolerance, salicylic acid (SA)-dependent pathogen defense, and flowering time regulation. Following is a brief overview of the current understanding of SUMO conjugation and deconjugation determinants, and biological processes that are regulated in plants.  相似文献   

3.
The conjugation of small ubiquitin-like modifiers SUMO-1, SUMO-2 and SUMO-3 onto target proteins requires the concerted action of the specific E1-activating enzyme SAE1/SAE2, the E2-conjugating enzyme Ubc9, and an E3-like SUMO ligase. NMR chemical shift perturbation was used to identify the surface of Ubc9 that interacts with the SUMO ligase RanBP2. Unlike known ubiquitin E2-E3 interactions, RanBP2 binds to the beta-sheet of Ubc9. Mutational disruption of Ubc9-RanBP2 binding affected SUMO-2 but not SUMO-1 conjugation to Sp100 and to a newly identified RanBP2 substrate, PML. RanBP2 contains a binding site specific for SUMO-1 but not SUMO-2, indicating that a Ubc9-SUMO-1 thioester could be recruited to RanBP2 via SUMO-1 in the absence of strong binding between Ubc9 and RanBP2. Thus we show that E2-E3 interactions are not conserved across the ubiquitin-like protein superfamily and identify a RanBP2-dependent mechanism for SUMO paralog-specific conjugation.  相似文献   

4.
The SUMO E2 Ubc9 serves as a lynchpin in the SUMO conjugation pathway, interacting with the SUMO E1 during activation, with thioester linked SUMO after E1 transfer and with the substrate and SUMO E3 ligases during conjugation. Here, we describe the structure determination of a non-covalent complex between human Ubc9 and SUMO-1 at 2.4 A resolution. Non-covalent interactions between Ubc9 and SUMO are conserved in human and yeast insomuch as human Ubc9 interacts with each of the human SUMO isoforms, and yeast Ubc9 interacts with Smt3, the yeast SUMO ortholog. Structural comparisons reveal similarities to several other non-covalent complexes in the ubiquitin pathway, suggesting that the non-covalent Ubc9-SUMO interface may be important for poly-SUMO chain formation, for E2 recruitment to SUMO conjugated substrates, or for mediating E2 interactions with either E1 or E3 ligases. Biochemical analysis suggests that this surface is less important for E1 activation or di-SUMO-2 formation, but more important for E3 interactions and for poly-SUMO chain formation when the chain exceeds more than two SUMO proteins.  相似文献   

5.
6.
Posttranslational protein modification by the small ubiquitin-like modifier (SUMO) is a highly dynamic and reversible process. To analyze the substrate specificity of SUMO-conjugating and -deconjugating enzymes from Arabidopsis (Arabidopsis thaliana), we reconstituted its SUMOylation cascade in vitro and tested the capacity of this system to conjugate the Arabidopsis SUMO isoforms AtSUMO1, 2, and 3 to the model substrate ScPCNA from yeast (Saccharomyces cerevisiae). This protein contains two in vivo SUMOylated lysine residues, namely K127 and K164. Under in vitro conditions, the Arabidopsis SUMOylation system specifically conjugates all tested SUMO isoforms to lysine-127, but not to lysine-164, of ScPCNA. The SUMO isoforms AtSUMO1 and AtSUMO2, but not AtSUMO3, were found to form polymeric chains on ScPCNA due to a self-SUMOylation process. In a complementary approach, we analyzed both the SUMO isopeptidase activity and the pre-SUMO-processing capacity of the putative Arabidopsis SUMO proteases At1g60220, At1g10570, and At5g60190 using the known SUMO isopeptidases ScULP1, XopD, and ESD4 (At4g15880) as reference enzymes. Interestingly, At5g60190 exhibits no SUMO protease activity but processes the pre-form of Arabidopsis Rub1. The other five enzymes represent SUMO isopeptidases that show different substrate preferences. All these enzymes cleave AtSUMO1 and AtSUMO2 conjugates of ScPCNA, whereas only the putative bacterial virulence factor XopD is able to release AtSUMO3. In addition, all five enzymes cleave pre-AtSUMO1 and pre-AtSUMO2 peptides, but none of the proteins efficiently produce mature AtSUMO3 or AtSUMO5 molecules from their precursors.  相似文献   

7.
SUMOylation is a highly conserved post-translational modification shown to modulate target protein activity in a wide variety of cellular processes. Although the requirement for SUMO modification of specific substrates has received significant attention in vivo and in vitro, the developmental requirements for SUMOylation at the cell and tissue level remain poorly understood. Here, we show that in Drosophila melanogaster, both heterodimeric components of the SUMO E1-activating enzyme are zygotically required for mitotic progression but are dispensable for cell viability, homeostasis and DNA synthesis in non-dividing cells. Explaining the lack of more pleiotropic effects following a global block of SUMO conjugation, we further demonstrate that low levels of global substrate SUMOylation are detected in mutants lacking either or both E1 subunits. These results not only suggest that minimal SUMOylation persists in the absence of Aos1/Uba2, but also show that the process of cell division is selectively sensitive to reductions in global SUMOylation. Supporting this view, knockdown of SUMO or its E1 and E2 enzymes robustly disrupts proliferating cells in the developing eye, without any detectable effects on the development or differentiation of neighboring post-mitotic cells.  相似文献   

8.
Reversible conjugation of the small ubiquitin modifier (SUMO) peptide to proteins (SUMOylation) plays important roles in cellular processes in animals and yeasts. However, little is known about plant SUMO targets. To identify SUMO substrates in Arabidopsis and to probe for biological functions of SUMO proteins, we constructed 6xHis-3xFLAG fused AtSUMO1 (HFAtSUMO1) controlled by the CaMV35S promoter for transformation into Arabidopsis Col-0. After heat treatment, an increased sumoylation pattern was detected in the transgenic plants. SUMO1-modified proteins were selected after two-dimensional gel electrophoresis (2-DE) image analysis and identified using matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). We identified 27 proteins involved in a variety of processes such as nucleic acid metabolism, signaling, metabolism, and including proteins of unknown functions. Binding and sumoylation patterns were confirmed independently. Surprisingly, MCM3 (At5G46280), a DNA replication licensing factor, only interacted with and became sumoylated by AtSUMO1, but not by SUMO1ΔGG or AtSUMO3. The results suggest specific interactions between sumoylation targets and particular sumoylation enzymes.  相似文献   

9.
E2 enzymes catalyze attachment of ubiquitin and ubiquitin-like proteins to lysine residues directly or through E3-mediated reactions. The small ubiquitin-like modifier SUMO regulates nuclear transport, stress response, and signal transduction in eukaryotes and is essential for cell-cycle progression in yeast. In contrast to most ubiquitin conjugation, the SUMO E2 enzyme Ubc9 is sufficient for substrate recognition and lysine modification of known SUMO targets. Crystallographic analysis of a complex between mammalian Ubc9 and a C-terminal domain of RanGAP1 at 2.5 A reveals structural determinants for recognition of consensus SUMO modification sequences found within SUMO-conjugated proteins. Structure-based mutagenesis and biochemical analysis of Ubc9 and RanGAP1 reveal distinct motifs required for substrate binding and SUMO modification of p53, IkappaBalpha, and RanGAP1.  相似文献   

10.
11.
The small ubiquitin-related modifier (SUMO) is a ubiquitin-like post-translational modifier that alters the localization, activity, or stability of many proteins. In the sumoylation process, an activated SUMO is transferred from SUMO-activating enzyme E1 complex (SAE1/SAE2) to SUMO-conjugating enzyme E2 (Ubc9). Among the multiple domains in E1, a C-terminal ubiquitin fold domain (UFD) of SAE2 shows high affinity for Ubc9, implying that UFD will be functionally important. We report NMR chemical shift assignments of UFD in SAE2 from rice. Almost all the resonances of UFD were assigned uniquely, representing a single conformation of UFD in solution. This is a contrast to the previous report for the corresponding UFD of human SAE2 which shows two conformational states. The secondary structure prediction of UFD in rice SAE2 shows the similar overall structure to the crystal structures of UFD in other E1 proteins such as SAE2 of human and yeast, ubiquitin-activating enzyme of yeast, and NEDD8-activating enzyme E1 catalytic subunit of human. Concomitantly, differences in the length of helices, strands, and loops are observed, particularly in the binding region to E2, supposing the variation in the UFD-E2 binding mode which may play a critical role in determining E1-E2 specificity.  相似文献   

12.
There are three mammalian SUMO paralogues: SUMO-1 is approximately 45% identical to SUMO-2 and SUMO-3, which are 96% identical to each other. It is currently unclear whether SUMO-1, -2, and -3 function in ways that are unique, redundant, or antagonistic. To address this question, we examined the dynamics of individual SUMO paralogues by using cell lines that stably express each of the mammalian SUMO proteins fused to the yellow fluorescent protein (YFP). Whereas SUMO-2 and -3 showed very similar distributions throughout the nucleoplasm, SUMO-1 was uniquely distributed to the nuclear envelope and to the nucleolus. Photobleaching experiments revealed that SUMO-1 dynamics was much slower than SUMO-2 and -3 dynamics. Additionally, the mobility of SUMO paralogues differed between subnuclear structures. Finally, the timing and distributions were dissimilar between paralogues as cells exited from mitosis. SUMO-1 was recruited to nuclear membrane as nuclear envelopes reformed in late anaphase, and accumulated rapidly into the nucleus. SUMO-2 and SUMO-3 localized to chromosome earlier and accumulated gradually during telophase. Together, these findings demonstrate that mammalian SUMO-1 shows patterns of utilization that are clearly discrete from the patterns of SUMO-2 and -3 throughout the cell cycle, arguing that it is functionally distinct and specifically regulated in vivo.  相似文献   

13.
A conserved catalytic residue in the ubiquitin-conjugating enzyme family   总被引:8,自引:0,他引:8  
Ubiquitin (Ub) regulates diverse functions in eukaryotes through its attachment to other proteins. The defining step in this protein modification pathway is the attack of a substrate lysine residue on Ub bound through its C-terminus to the active site cysteine residue of a Ub-conjugating enzyme (E2) or certain Ub ligases (E3s). So far, these E2 and E3 cysteine residues are the only enzyme groups known to participate in the catalysis of conjugation. Here we show that a strictly conserved E2 asparagine residue is critical for catalysis of E2- and E2/RING E3-dependent isopeptide bond formation, but dispensable for upstream and downstream reactions of Ub thiol ester formation. In contrast, the strictly conserved histidine and proline residues immediately upstream of the asparagine are dispensable for catalysis of isopeptide bond formation. We propose that the conserved asparagine side chain stabilizes the oxyanion intermediate formed during lysine attack. The E2 asparagine is the first non-covalent catalytic group to be proposed in any Ub conjugation factor.  相似文献   

14.
SUMO1/Smt3, a ubiquitin-like protein modifier, is known to conjugate to other proteins and modulate their functions in various important processes. Similar to the ubiquitin conjugation system, SUMO/Smt3 is transferred to substrate lysine residues through the thioester cascade of E1 (activating enzyme) and E2 (conjugating enzyme). In our previous report (Takahashi, Y., Toh-e, A., and Kikuchi, Y. (2001) Gene 275, 223-231), we showed that Siz1/Ull1 (YDR409w) of budding yeast, a member of the human PIAS family containing a RING-like domain, is a strong candidate for SUMO1/Smt3 ligase because the SUMO1/Smt3 modification of septin components was abolished in the ull1 mutant and Ull1 associated with E2 (Ubc9) and the substrates (septin components) in immunoprecipitation experiments. Here we have developed an in vitro Smt3 conjugation system for a septin component (Cdc3) using purified recombinant proteins. In this system, Ull1 is additionally required as well as E1 (Sua1.Uba2 complex), E2 (Ubc9), and ATP. A cysteine residue of the RING-like domain was essential for the conjugation both in vivo and in vitro. Furthermore, a region containing the RING-like domain directly interacted with Ubc9 and Cdc3. Thus, this SUMO/Smt3 ligase functions as an adaptor between E2 and the target proteins.  相似文献   

15.
Ribosomal precursor particles are initially assembled in the nucleolus prior to their transfer to the nucleoplasm and export to the cytoplasm. In a screen to identify thermosensitive (ts) mutants defective in the export of pre-60S ribosomal subunit, we isolated the rix16-1 mutant. In this strain, nucleolar accumulation of the Rpl25-eGFP reporter was complemented by UBA2 (a subunit of the E1 sumoylation enzyme). Mutations in UBC9 (E2 enzyme), ULP1 [small-ubiquitin-related modifier (SUMO) isopeptidase] and SMT3 (SUMO-1) caused 60S export defects. A directed analysis of the SUMO proteome revealed that many ribosome biogenesis factors are sumoylated. Importantly, preribosomal particles along both the 60S and the 40S synthesis pathways were decorated with SUMO, showing its direct involvement. Consistent with this, early 60S assembly factors were genetically linked to SUMO conjugation. Notably, the SUMO deconjugating enzyme Ulp1, which localizes to the nuclear pore complex (NPC), was functionally linked to the 60S export factor Mtr2. Together our data suggest that sumoylation of preribosomal particles in the nucleus and subsequent desumoylation at the NPC is necessary for efficient ribosome biogenesis and export in eukaryotes.  相似文献   

16.
SUMO (small ubiquitin-like modifier)/Smt3 (suppressor of mif two) is a member of the ubiquitin-related protein family and is known to conjugate with many proteins. In the sumoylation pathway, SUMO/Smt3 is transferred to substrate lysine residues through the thioester cascade of E1 (activating enzyme) and E2 (conjugating enzyme), and E3 (SUMO ligase) functions as an adaptor between E2 and each substrate. Yeast Ull1 (ubiquitin-like protein ligase 1)/Siz1, a PIAS (protein inhibitor of activated STAT)-type SUMO ligase, modifies both cytoplasmic and nuclear proteins. In this paper, we performed a domain analysis of Ull1/Siz1 by constructing various deletion mutants. A novel conserved N-terminal domain, called PINIT, as well as the RING-like domain (SP-RING) were required for the SUMO ligase activity in the in vitro conjugation system and for interaction with Smt3 in an in vitro binding assay. The most distal N-terminal region, which contains a putative DNA-binding SAF-A/B, Acinus, and PIAS (SAP) motif, was not required for the ligase activity but was involved in nuclear localization. A strong SUMO-binding motif was identified, which interacted with Smt3 in the two-hybrid system but was not necessary for the ligase activity. The most distal C-terminal domain was important for stable localization at the bud neck region and thereby for the substrate recognition of septins. Furthermore, the C-terminal half conferred protein instability on Ull1/Siz1. Taken together, we conclude that the SP-RING and PINIT of Ull1/Siz1 are core domains of the SUMO ligase, and the other domains are regulatory for protein stability and subcellular localization.  相似文献   

17.
Song Y  Liao J 《Molecular bioSystems》2012,8(6):1723-1729
Ubiquitination and SUMOylation are multi-step cascade reactions, in which small protein modifiers are activated by E1 activating enzyme, transferred to E2 conjugating enzyme, and conjugated to substrates mediated by the E3 ligase in vivo. The structural and biochemical bases for the cascade reactions have been elucidated by several studies. However, the reaction intermediates and dynamics of these peptide modifiers among the enzymes have not been completely elucidated. Here we report detailed investigations of SUMOylation dynamics and interaction switches of SUMO1 among its ligases using FRET technology. These studies show that, while SUMO1 and the E1 subunit Aos1 or Uba2 have no intrinsic affinity for each other, the adenylation of SUMO1 carried out by Aos1 requires the presence of Uba2, and subsequently conformational changes trigger the interaction of SUMO1 and Uba2 for a thioester bond formation. The reaction intermediates among SUMO1 and its ligases are indirectly revealed by FRET signals generated by each pair. Furthermore, the transfer of SUMO1 from Uba2 to E2 enzyme, Ubc9, depends on the formation of a thioester bond between SUMO1 and Ubc9, and requires non-covalent interaction between Ubc9 and Uba2, but not between Ubc9 and SUMO1. These interaction switches provide the physical and biochemical bases for the SUMO activation and a transfer cascade required for SUMO activation.  相似文献   

18.
An E3-like factor that promotes SUMO conjugation to the yeast septins   总被引:29,自引:0,他引:29  
Johnson ES  Gupta AA 《Cell》2001,106(6):735-744
  相似文献   

19.
SUMO proteases or deSUMOylases regulate the lifetime of SUMO-conjugated targets in the cell by cleaving off the isopetidic bond between the substrate and the SUMO modifier, thus reversing the conjugation activity of the SUMO E3 ligases. In humans the deSUMOylating activity is mainly conducted by the SENP/ULP protease family, which is constituted of six members sharing a homologous catalytic globular domain. SENP6 and SENP7 are the most divergent members of the family and they show a unique SUMO2/3 isoform preference and a particular activity for dismantling polySUMO2 chains. Here, we present the crystal structure of the catalytic domain of human SENP7 bound to SUMO2, revealing structural key elements for the SUMO2 isoform specificity of SENP7. In particular, we describe the specific contacts between SUMO2 and a unique insertion in SENP7 (named Loop1) that is responsible for the SUMO2 isoform specificity. All the other interface contacts between SENP7 and SUMO2, including the SUMO2 C-terminal tail interaction, are conserved among members of the SENP/ULP family. Our data give insight into an evolutionary adaptation to restrict the deSUMOylating activity in SENP6 and SENP7 for the SUMO2/3 isoforms.  相似文献   

20.
Conjugation of the small ubiquitin-like modifier SUMO-1/SMT3C/Sentrin-1 to proteins in vitro is dependent on a heterodimeric E1 (SAE1/SAE2) and an E2 (Ubc9). Although SUMO-2/SMT3A/Sentrin-3 and SUMO-3/SMT3B/Sentrin-2 share 50% sequence identity with SUMO-1, they are functionally distinct. Inspection of the SUMO-2 and SUMO-3 sequences indicates that they both contain the sequence psiKXE, which represents the consensus SUMO modification site. As a consequence SAE1/SAE2 and Ubc9 catalyze the formation of polymeric chains of SUMO-2 and SUMO-3 on protein substrates in vitro, and SUMO-2 chains are detected in vivo. The ability to form polymeric chains is not shared by SUMO-1, and although all SUMO species use the same conjugation machinery, modification by SUMO-1 and SUMO-2/-3 may have distinct functional consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号