首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The adoption of pest‐resistant transgenic plants to reduce yield losses and decrease pesticide use has been successful. To achieve the goal of controlling both chewing and sucking pests in a given transgenic plant, we generated transgenic tobacco, Arabidopsis, and rice plants expressing the fusion protein, AaIT/GNA, in which an insecticidal scorpion venom neurotoxin (Androctonus australis toxin, AaIT) is fused to snowdrop lectin (Galanthus nivalis agglutinin, GNA). Compared with transgenic tobacco and Arabidopsis plants expressing AaIT or GNA, transgenic plants expressing AaIT/GNA exhibited increased resistance and toxicity to one chewing pest, the cotton bollworm, Helicoverpa armigera. Transgenic tobacco and rice plants expressing AaIT/GNA showed increased resistance and toxicity to two sucking pests, the whitefly, Bemisia tabaci, and the rice brown planthopper, Nilaparvata lugens, respectively. Moreover, in the field, transgenic rice plants expressing AaIT/GNA exhibited a significant improvement in grain yield when infested with N. lugens. This study shows that expressing the AaIT/GNA fusion protein in transgenic plants can be a useful approach for controlling pests, particularly sucking pests which are not susceptible to the toxin in Bt crops.  相似文献   

2.
3.
Neotyphodium fungal endophytes form mutualistic symbiotic associations with many grasses of the subfamily Pooideae, including important forage and turfgrass species. This relationship provides a competitive advantage to the host plant by increasing abiotic/biotic stress tolerance, such as its resistance to drought, diseases, and insect pests. The insect deterrent effects of endophytes are now receiving attention in Japan, as insect pests growing in meadows are causing problems in adjacent rice paddies. One of the most serious problems is the kernel spotting of rice grains caused by the rice leaf bug, Trigonotylus caelestialium Kirkaldy (Heteroptera: Miridae), which reproduces on Lolium species grown as forage. To determine the potential of Neotyphodium endophytes to reduce the invasion of rice crops by T. caelestialium from adjacent Lolium crops, we carried out choice and no‐choice feeding tests using endophyte‐infected and endophyte‐free clonal perennial ryegrass (Lolium perenne L.) (Poaceae). Our experiments revealed that the presence of the Neotyphodium endophyte strongly deterred the feeding of both first‐instar larvae and adults of T. caelestialium. These results show the potential of Neotyphodium endophytes to reduce the number of T. caelestialium in forage fields and grasslands, and thus to reduce the damage to rice grains caused by this insect pest.  相似文献   

4.
Concerns about the negative effects of chemical control of oilseed rape (Brassica napus L.) pests on non-target species, human safety, and development of insecticide resistance, require alternative control strategies such as the use of trap crops and biocontrol to be developed. Psylliodes chrysocephala(L.) (Coleoptera: Chrysomelidae) (cabbage stem flea beetle) and Ceutorhynchus pallidactylus (Marsh.) (Coleoptera: Curculionidae) (cabbage stem weevil) are two major stem-mining pests of oilseed rape. This study investigated the phenology of these pests and their main parasitoids in the UK, the potential use of turnip rape (Brassica rapa L.) as a trap crop to reduce oilseed rape infestation, and the effects of insecticide treatment on pest incidence and larval parasitism. Water trap samples, plant dissections and pest larval dissections were done to determine: the incidence of adult pests and their parasitoids, the level of plant infestation by the pests and percentage larval parasitism, respectively. The turnip rape trap crop borders reduced P. chrysocephalabut not C. pallidactylus infestation of oilseed rape plots. Treatment of the trap crop with insecticide had little effect on either pest or parasitoid incidence in the oilseed rape. TersilochusmicrogasterSzép. andT. obscurator Aub. (Hymenoptera: Ichneumonidae) were the main larval parasitoids of P. chrysocephalaand C. pallidactylus, respectively. Tersilochus microgasteris reported for the first time in the UK. The implications for integrated pest management are discussed.  相似文献   

5.
This study reports the isolation of 63 endophytic fungal isolates from two traditional medicinal plants, Ocimum sanctum and Sapindus detergens from different locations of Amritsar, India. The functional characterization of the fungi for their ability to produce anti bacterial and anti cancer agent was carried out. Sixteen strains were characterized at molecular level by sequencing the amplified ITSI-5.8-ITSII region of rDNA. The phylogenetic tree resolved the endophytic fungi into different clades. The fungal endophytes belonging to order Pleosporales (Alternaria sp., Phoma sojicola and Exserohilum sp.) were functionally versatile as they produced diverse biomolecules including antibacterial agent active against Mycobacterium smegmatis, as well as cytotoxic activity against different human cancer cell lines of lung, ovary, breast, prostrate, neuroblastoma and colon.  相似文献   

6.
Aphid is one of the most serious, sap‐sucking insect pests which cause significant losses of crop yields. The aim of this study is to investigate whether transgenic plants expressing Zephyranthes candida agglutinin (ZCA) could confer enhanced resistance to aphids. Tobacco was transformed with a plasmid, pCAMBIAZCA, containing the marker genes nptII and gusA and the Zephyranthes candida agglutinin gene (zca) via Agrobacterium tumefaciens‐mediated transformation. Twenty‐six independent transgenic plants were regenerated. Western blot analysis revealed ZCA expression at various levels in transgenic plants. Insect bioassay tests showed that transgenic plants expressing a high level of ZCA significantly inhibited the growth of the population of peach potato aphids (Myzus persicae Sulzer). This is the first report in which transgenic plants expressing ZCA conferred enhanced resistance to aphids. Our study suggests the zca gene could be a useful candidate for genetic engineering strategies in plants to provide aphid resistance.  相似文献   

7.
Abstract

Advances on plant–fungal interactions reveal that root symbiotic fungi actively modulate host growth, resistance response and secondary metabolism. Artemisia annua has been widely recognized as an important medicinal plant for artemisinin production, yet little is known about the fungal consortium associated with roots of A. annua. In this article, microscopic and culture-dependant methods were used to evaluate the identity and taxonomic affinities of root symbiotic fungi. Morphological evidence confirmed that arbuscular mycorrhizal fungi were dominant fungal group in naturally regenerated roots, but low colonization frequency in planted roots. Dark septate endophytes (DSEs) were easily found, which were characterized with dark pigmented hypha and a sclerotium-like structure in root cortex, and other endophytic fungi also occurred. A total of 36 isolates were recovered. Combined morphological and molecular identification (based on ITS sequences) determined 21 fungal taxa (genotype), which were placed into numerous lineages of Ascomycota. The best BLAST match indicated that almost half of total taxa were closely related to undescribed fungi, some of them may act as novel DSEs but experimental data were warranted. Interestingly, remarkable difference of fungal community associated with two types of roots was examined and no culturable fungi overlapped. Our findings provide some additional evidence that DSEs and other root endophytes may be as common as mycorrhizal fungi. Recovered fungi as raw materials for bioassay of endophytes-mediated promotion of artemisinin content in A. annua will be conducted in further research.  相似文献   

8.
Clavicipitaceous fungi of the genus Neotyphodium occur widely as mutualistic, systemic, seed‐borne infections in festucoid grasses. Grass infection by these fungi is associated with the presence of a range of secondary metabolites (SM), several of which have been demonstrated to confer to the plant resistance against herbivorous vertebrates and insects. An initial experiment demonstrated that endophytic infection by Neotyphodium can influence the utilisation of grasses by Deroceras, with feeding preferences and impact on plant yields affected differentially by endophytes with different SM profiles. The role of Neotyphodium SM in feeding preferences of Deroceras slugs were then evaluated in artificial diets. Among the indole diterpenoids tested, lolitrem B was demonstrated to reduce feeding, while diets containing paxilline, lolitriol, α‐paxitriol and β‐paxitriol tended to be preferred over that of untreated diet. The pyrrolopyrazine alkaloid peramine had no effect. Among the ergopeptine alkaloids tested in the diets, ergotamine and ergovaline were demonstrated to be phagostimulatory. These results with artificial diets were generally consistent with Deroceras reticulatum preferences among plants of known Neotyphodium endophyte strain and SM profile. Deroceras slugs obtained from sites containing contrasting frequencies of Neotyphodium‐infected grasses, exhibited differential responses to Neotyphodium SM incorporated into artificial diet. This study demonstrates that infection of grasses by different isolates of Neotyphodium endophytes differentially influence herbivory by molluscs, reflecting their SM profile. These results offer an explanation for variable acceptability of grasses to molluscs and their importance in the diet of molluscs in the field reported in previous studies in both natural and agricultural systems. Neotyphodium endophytes potentially offer novel approaches to management of mollusc pests in agricultural gramineous crops.  相似文献   

9.
Several ascomycetous insect-pathogenic fungi, including species in the genera Beauveria and Metarhizium, are plant root symbionts/endophytes and are termed as endophytic insect-pathogenic fungi (EIPF). The endophytic capability and insect pathogenicity of Metarhizium are coupled to provide an active method of insect-derived nitrogen transfer to plant hosts via fungal mycelia. In exchange for the insect-derived nitrogen, the plant provides photosynthate to the fungus. This symbiotic interaction offers other benefits to the plant—EIPF can improve plant growth, they are antagonistic to plant pathogens and herbivores and can enhance the plant tolerance to abiotic stresses. The mechanisms and underlying biochemical and genetic features of insect pathogenesis are generally well-established. However, there is a paucity of information regarding the underlying mechanisms in this plant-symbiotic association. Here we review five aspects of EIPF interactions with host plant roots: (i) rhizosphere colonization, (ii) signalling factors from the plant and EIPF, (iii) modulation of plant defence responses, (iv) nutrient exchange and (v) tripartite interactions with insects and other micro-organisms. The elucidation of these interactions is fundamental to understanding this symbiotic association for effective application of EIPF in an agricultural setting.  相似文献   

10.
The plant hormone salicylic acid (SA) is recognized as an effective defence against biotrophic pathogens, but its role as regulator of beneficial plant symbionts has received little attention. We studied the relationship between the SA hormone and leaf fungal endophytes on herbivore defences in symbiotic grasses. We hypothesize that the SA exposure suppresses the endophyte reducing the fungal‐produced alkaloids. Because of the role that alkaloids play in anti‐herbivore defences, any reduction in their production should make host plants more susceptible to herbivores. Lolium multiflorum plants symbiotic and nonsymbiotic with the endophyte Epichloë occultans were exposed to SA followed by a challenge with the aphid Rhopalosiphum padi. We measured the level of plant resistance to aphids, and the defences conferred by endophytes and host plants. Symbiotic plants had lower concentrations of SA than did the nonsymbiotic counterparts. Consistent with our prediction, the hormonal treatment reduced the concentration of loline alkaloids (i.e., N‐formyllolines and N‐acetylnorlolines) and consequently decreased the endophyte‐conferred resistance against aphids. Our study highlights the importance of the interaction between the plant immune system and endophytes for the stability of the defensive mutualism. Our results indicate that the SA plays a critical role in regulating the endophyte‐conferred resistance against herbivores.  相似文献   

11.
A systemic study of fungal endophytes associated with different plant parts of Cannabis sativa and their antifungal activity was investigated in the present study. A total of 281 plant segments, including 91 leaves, 93 stem and 97 petioles samples, were screened for the isolation of endophytic fungi. Totally, 212 (77.65%) segments were found colonised by different fungi. Highest colonisation frequency were observed in stem parts (84.94%), then leaves (82.41%) and lowest 59.79% in petiole. Total eight fungal genera belonging to 12 species were isolated. Aspergillus is recorded as the most frequently occurring genera with three species Aspergillus niger, Aspergillus flavus and Aspergillus nidulans followed by Penicillium with two species Penicillium chrysogenum and Penicillium citrinum, while Phoma, Rhizopus, Colletotrichum, Cladosporium and Curvularia with single species. The antifungal potential of A. niger and A. flavus – two most frequently isolated endophytic fungi – was evaluated against two common plant pathogen, Colletotrichum gloeosporioides and Curvularia lunata. Different plant and fungal extracts individually and in combinations showed variations in antifungal activity against both the pathogens. The primary results obtained on antifungal activity of endophytes show their possible role in plant defence mechanism but it is a preliminary approach and more extensive research is still required.  相似文献   

12.
湖北烟草内生真菌生物多样性和种群结构分析   总被引:1,自引:0,他引:1  
【目的】研究传统药用植物烟草(Nicotiana tabacum L.)内生真菌的丰富度,揭示其种群多样性和群落结构,为烟草内生真菌资源的有效利用奠定基础。【方法】采用组织分离法进行烟草内生真菌的分离,通过形态学和分子生物学相结合的方法进行菌株分类鉴定,以香农多样性指数及相对分离频率反映内生真菌物种多样性及分布规律。【结果】从不同组织部位、不同生长时期、不同海拔样地的健康烟草中共分离获得539株内生真菌,根据r DNA-ITS系统发育分析鉴定为31属73种,香农多样性指数为2.78,曲霉属Aspergillus和镰孢属Fusarium为优势菌群,其相对分离频率分别为22.63%和12.99%。其分布规律表现为茎部内生真菌的多样性高于叶部和根部;随着生育期的延长,内生真菌多样性逐步增多;随着海拔高度升高,内生真菌的种类和数量呈现降低的趋势。【结论】烟草内生真菌具有丰富的生物多样性,其分布表现出组织、生长时期、海拔高度专化性。阐明内生真菌在烟草中的分布规律,可以为烟草内生真菌在农业生产领域的开发应用提供科学依据。  相似文献   

13.
14.
Brassica species display enormous diversity and subsequently provide the widest assortment of products used by man from a single plant genus. Many species are important for agriculture, horticulture, in bioremediation, as medicines, soil conditioners, composting crops, and in the production of edible and industrial oils such as liquid fuels and lubricants. Many wild Brassica relatives possess a number of useful agronomic traits, including beneficial microbial endophytes that could be incorporated into breeding programs. Endophytes of Brassica, and/or their metabolites, have been demonstrated to improve and promote plant growth; increase yield; reduce disease symptoms caused by plant pathogens; reduce herbivory from insect pests; remove contaminants from soil; improve plant performance under extreme conditions of temperature and water availability; solubilise phosphate and contribute assimilable nitrogen to their hosts. Brassica napus (oilseed rape) and Brassica oleracea var. botrytis (broccoli and cauliflower) are the most economically important species of Brassica worldwide. These commercial crops are attacked by a wide range of pathogens and insect pests that are responsible for millions of dollars in lost revenue, with current control options offering little mitigation. No alternative control products are available for the Brassica industry, although it has been well documented in the literature that the use of endophytic microorganisms can offer beneficial traits to their host plants, including pest and disease resistance. The aim of this review is to describe the literature concerning beneficial microbial endophytes and their prospects to enhance or provide additional traits to their Brassica host species.  相似文献   

15.
This study was conducted to isolate endophytic fungi from oilseed rape (Brassica napus), to identify the fungal endophytes based on morphology and ITS (ITS1-5.8S rDNA-ITS2) sequences, and to evaluate their efficacy in suppression of the plant pathogenic fungi Sclerotinia sclerotiorum and Botrytis cinerea. Selected endophytic fungal isolates were further tested for promoting growth of oilseed rape in potting experiments. A total of 97 endophytic fungal isolates were obtained from roots (35), stems (49) and leaves (13) of B. napus. Forty fungal species were identified and most species (80%) belong to Ascomycota. The species composition is highly diversified with Simpson’s diversity index reaching 0.959. Alternaria alternata is the dominant species accounting for 12.4% of the isolates. Twenty-four isolates exhibited antifungal activity against S. sclerotiorum in dual cultures on potato dextrose agar forming inhibition zones of 3–17 mm in width. The culture filtrates of Aspergillus flavipes CanS-34A, Chaetomium globosum CanS-73, Clonostachys rosea CanS-43 and Leptosphaeria biglobosa CanS-51 in potato dextrose broth exhibited consistent and effective suppression of oilseed rape leaf blight caused by S. sclerotiorum. Fusarium oxysporum CanR-46 was detected capable of production of volatile organic compounds highly inhibitory to S. sclerotiorum and B. cinerea. Moreover, A. alternata CanL-18, Fusarium tricinctum CanR-70 and CanR-71r, and L. biglobosa CanS-51 exhibited growth-promoting effects on oilseed rape. These results suggest that B. napus harbors diversified endophytic fungi, from which potential biocontrol agents against S. sclerotiorum and B. cinerea, and for promoting growth of B. napus can be screened.  相似文献   

16.
In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak‐dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal‐root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root‐associated fungal community was dominated by root‐endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root‐associated fungal communities of oak‐dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities.  相似文献   

17.
Interactions among endophytic bacteria and fungi: Effects and potentials   总被引:5,自引:0,他引:5  
Plants benefit extensively by harbouring endophytic microbes. They promote plant growth and confer enhanced resistance to various pathogens. However, the way the interactions among endophytes influence the plant productivity has not been explained. Present study experimentally showed that endophytes isolated from rice (Oryza sativa) used as the test plant produced two types of interactions; biofilms (bacteria attached to mycelia) and mixed cultures with no such attachments. Acidity, as measured by pH in cultures with biofilms was higher than that of fungi alone, bacteria alone or the mixed cultures. Production of indoleacetic acid like substances (IAAS) of biofilms was higher than that of mixed cultures, fungi or bacteria. Bacteria and fungi produced higher quantities of IAAS than mixed cultures. In mixed cultures, the potential of IAAS production of resident microbes was reduced considerably. There was a negative relationship between IAAS and pH of the biofilms, indicating that IAAS was the main contributor to the acidity. However, such a relationship was not observed in mixed cultures. Microbial acid production is important for suppressing plant pathogens. Thus the biofilm formation in endophytic environment seems to be very important for healthy and improved plant growth. However, it is unlikely that an interaction among endophytes takes place naturally in the endophytic environment, due to physical barriers of plant tissues. Further, critical cell density dependant quorum sensing that leads to biofilm formation may not occur in the endophytic environment as there is a limited space. As suchin vitro production and application of beneficial biofilmed inocula of endophytes are important for improved plant production in any agro-ecosystem. The conventional practice of plant inoculation with monocultures or mixed cultures of effective microbes may not give the highest microbial effect, which may only be achieved by biofilm formation.  相似文献   

18.
New control strategies for insect pests of arable agriculture are needed to reduce current dependence on synthetic insecticides, the use of which is unsustainable. We investigated the potential of a simple control strategy to protect spring‐sown oilseed rape, Brassica napus L. (Brassicaceae), from two major inflorescence pests: the pollen beetle, Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), and the seed weevil, Ceutorhynchus assimilis (Paykull) (Coleoptera: Curculionidae), through exploitation of their host plant preferences. The strategy comprised, for the main crop, Starlight [an oilseed rape cultivar with relatively low proportions of alkenyl glucosinolates in the leaves (thereby releasing lower levels of attractive isothiocyanates than conventional cultivars)] and turnip rape, Brassica rapa (L.) (Brassicaceae), as a trap crop. We tested the system in laboratory, polytunnel semifield arena, and field experiments. The odours of Starlight were less attractive in olfactometer tests to both pests than those from a conventional cultivar, Canyon, and the plants were less heavily colonized in both polytunnel and field experiments. Turnip rape showed good potential as a trap crop for oilseed rape pests, particularly the pollen beetle as its odour was more attractive to both pests than that of oilseed rape. Polytunnel and field experiments showed the importance of relative growth stage in the system. As turnip rape flowers earlier than oilseed rape, beetles would be maintained on turnip rape past the damage‐susceptible growth stage of oilseed rape. The development of a pest control regime based on this strategy is discussed.  相似文献   

19.
1. Fungal endophytes are microfungi that reside asymptomatically inside of leaf tissues, increasing in density and diversity through time after leaves flush. Previous studies have suggested that the presence of fungal endophytes in the harvest material of leaf‐cutting ants (Atta colombica, Guérin‐Méneville) may negatively affect the ants and their fungal cultivar. 2. In the present study, it was tested whether the presence and diversity of fungal endophytes affected the amount of time necessary for leaf‐cutter ants to cut, process, and plant leaf material in their fungal garden. It was found that ants took 30–43% longer to cut, carry, clean, and plant leaf tissue with high relative to low endophyte abundance, and that the ants responded similarly to leaf tissue with high or low endophyte diversity. 3. It was further investigated whether the fungal cultivars' colonisation rate was greater on leaf material without fungal endophytes. No difference in the ants' cultivar colonisation rate on leaf tissue with high or low endophyte abundance was observed.  相似文献   

20.
A semiochemical based push-pull strategy for control of oilseed rape pests is being developed at Rothamsted Research. This strategy uses insect and plant derived semiochemicals to manipulate pests and their natural enemies. An important element within this strategy is an understanding of the importance of non-host plant cues for pest insects and how such signals could be used to manipulate their behaviour. Previous studies using a range of non-host plants have shown that, for the pollen beetle Meligethes aeneus (Coleoptera: Nitidulidae), the essential oil of lavender, Lavandula angustifolia (Lamiaceae), was the most repellent. The aim of this study was to identify the active components in L. angustifolia oil, and to investigate the behaviour of M. aeneus to these chemicals, to establish the most effective use of repellent stimuli to disrupt colonisation of oilseed rape crops. Coupled gas chromatography-electroantennography (GC-EAG) and gas chromatography-mass spectrometry (GC-MS) resulted in the identification of seven active compounds which were tested for behavioural activity using a 4-way olfactometer. Repellent responses were observed with (±)-linalool and (±)-linalyl acetate. The use of these chemicals within a push-pull pest control strategy is discussed. Handling Editor: Yvan Rahbe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号