首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
GMP synthetase is a glutamine amidotransferase that incorporates ammonia derived from glutamine into the nucleotide xanthosine 5'-monophosphate (XMP) to form guanosine 5'-monophosphate (GMP). Functional coordination of domains in glutamine amidotransferases leads to upregulation of glutamine hydrolysis in the presence of acceptor substrates and is a common feature in this class of enzymes. We have shown earlier that binding of substrates to the acceptor domain of Plasmodium falciparum GMP synthetase (PfGMPS) leads to enhancement in both glutaminase activity and rate of glutaminase inactivation, by the irreversible inhibitors acivicin and diazo-oxonorleucine [Bhat JY et al. (2008) Biochem J409, 263-273], a process that must be driven by conformational alterations. In this paper, through the combined use of biochemical assays, optical spectroscopy and mass spectrometry, we demonstrate that PfGMPS undergoes conformational transitions upon binding of substrates to the acceptor domain. Limited proteolysis and hydrogen-deuterium exchange in conjunction with mass spectrometry unveil region-specific conformational changes in the ATP + XMP bound state of PfGMPS. Decreased accessibility of R294 and K428 residues to trypsin in the ATP pyrophosphatase domain and reduced deuterium incorporation in the 143-155 region, pertaining to the glutaminase domain, suggest that in PfGMPS ligand-induced conformational changes are not only local but also transmitted over a long range across the domains. Overall, these results provide a detailed understanding of the substrate-induced changes in PfGMPS that could be essential for the overall catalytic process.  相似文献   

2.
Glutamine-dependent NAD(+) synthetase, Qns1, utilizes a glutamine aminotransferase domain to supply ammonia for amidation of nicotinic acid adenine dinucleotide (NaAD(+)) to NAD(+). Earlier characterization of Qns1 suggested that glutamine consumption exceeds NAD(+) production by 40%. To explore whether Qns1 is systematically wasteful or whether additional features account for this behavior, we performed a careful kinetic and molecular genetic analysis. In fact, Qns1 possesses remarkable properties to reduce waste. The glutaminase active site is stimulated by NaAD(+) more than 50-fold such that glutamine is not appreciably consumed in the absence of NaAD(+). Glutamine consumption exceeds NAD(+) production over the whole range of glutamine and NaAD(+) substrate concentrations with greatest efficiency occurring at saturation of both substrates. Kinetic data coupled with site-directed mutagenesis of amino acids in the predicted ammonia channel indicate that NaAD(+) stimulates the glutaminase active site in the k(cat) term by a synergistic mechanism that does not require ammonia utilization by the NaAD(+) substrate. Six distinct classes of Qns1 mutants that fall within the glutaminase domain and the synthetase domain selectively inhibit components of the coordinated reaction.  相似文献   

3.
NAD is a ubiquitous and essential metabolic redox cofactor which also functions as a substrate in certain regulatory pathways. The last step of NAD synthesis is the ATP-dependent amidation of deamido-NAD by NAD synthetase (NADS). Members of the NADS family are present in nearly all species across the three kingdoms of Life. In eukaryotic NADS, the core synthetase domain is fused with a nitrilase-like glutaminase domain supplying ammonia for the reaction. This two-domain NADS arrangement enabling the utilization of glutamine as nitrogen donor is also present in various bacterial lineages. However, many other bacterial members of NADS family do not contain a glutaminase domain, and they can utilize only ammonia (but not glutamine) in vitro. A single-domain NADS is also characteristic for nearly all Archaea, and its dependence on ammonia was demonstrated here for the representative enzyme from Methanocaldococcus jannaschi. However, a question about the actual in vivo nitrogen donor for single-domain members of the NADS family remained open: Is it glutamine hydrolyzed by a committed (but yet unknown) glutaminase subunit, as in most ATP-dependent amidotransferases, or free ammonia as in glutamine synthetase? Here we addressed this dilemma by combining evolutionary analysis of the NADS family with experimental characterization of two representative bacterial systems: a two-subunit NADS from Thermus thermophilus and a single-domain NADS from Salmonella typhimurium providing evidence that ammonia (and not glutamine) is the physiological substrate of a typical single-domain NADS. The latter represents the most likely ancestral form of NADS. The ability to utilize glutamine appears to have evolved via recruitment of a glutaminase subunit followed by domain fusion in an early branch of Bacteria. Further evolution of the NADS family included lineage-specific loss of one of the two alternative forms and horizontal gene transfer events. Lastly, we identified NADS structural elements associated with glutamine-utilizing capabilities.  相似文献   

4.
Guanine monophosphate (GMP) synthetase is a bifunctional two-domain enzyme. The N-terminal glutaminase domain generates ammonia from glutamine and the C-terminal synthetase domain aminates xanthine monophosphate (XMP) to form GMP. Mammalian GMP synthetases (GMPSs) contain a 130-residue-long insert in the synthetase domain in comparison to bacterial proteins. We report here the structure of a eukaryotic GMPS. Substrate XMP was bound in the crystal structure of the human GMPS enzyme. XMP is bound to the synthetase domain and covered by a LID motif. The enzyme forms a dimer in the crystal structure with subunit orientations entirely different from the bacterial counterparts. The inserted sub-domain is shown to be involved in substrate binding and dimerization. Furthermore, the structural basis for XMP recognition is revealed as well as a potential allosteric site. Enzymes in the nucleotide metabolism typically display an increased activity in proliferating cells due to the increased need for nucleotides. Many drugs used as immunosuppressants and for treatment of cancer and viral diseases are indeed nucleobase- and nucleoside-based compounds, which are acting on or are activated by enzymes in this pathway. The information obtained from the crystal structure of human GMPS might therefore aid in understanding interactions of nucleoside-based drugs with GMPS and in structure-based design of GMPS-specific inhibitors.  相似文献   

5.
Alkylation of guanosine 5'-monophosphate (GMP) synthetase with the glutamine analogs L-2-amino-4-oxo-5-chloropentanoic acid (chloroketon) and 6-diazo-5-oxonorleucine (DON) inactivated glutamine- and NH3-dependent GMP synthetase. Inactivation exhibited second order kinetics. Complete inactivation was accompanied by covalent attachment of 0.4 to 0.5 equivalent of chloroketon/subunit. Alkylation of GMP synthetase with iodacetamide selectively inactivated glutamine-dependent activity. The NH3-dependent activity was relatively unaffected. Approximately 1 equivalent of carboxamidomethyl group was incorporated per subunit. Carboxymethylcysteine was the only modified amino acid hydrolysis. Prior treatment with chloroketone decreased the capacity for alkylation by iodacetamide, suggesting that both reagents alkylate the same residue. GMP synthetase exhibits glutaminase activity when ATP is replaced by adenosine plus PPi. Iodoacetamide inactivates glutaminase concomitant with glutamine-dependent GMP synthetase. Analysis of pH versus velocity and Km data indicates that the amide of glutamine remains enzyme bound and does not mix with exogenous NH3 in the synthesis of GMP.  相似文献   

6.
Glutamine-dependent NAD+ synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD+ from NaAD+ (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 ? (1 ?=0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD+/ATP), substrate analogue {NaAD+/AMP-CPP (adenosine 5'-[α,β-methylene]triphosphate)} and intermediate analogues (NaAD+/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD+/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.  相似文献   

7.
Imidazole glycerol phosphate synthase catalyzes formation of the imidazole ring in histidine biosynthesis. The enzyme is also a glutamine amidotransferase, which produces ammonia in a glutaminase active site and channels it through a 30-A internal tunnel to a cyclase active site. Glutaminase activity is impaired in the resting enzyme, and stimulated by substrate binding in the cyclase active site. The signaling mechanism was investigated in the crystal structure of a ternary complex in which the glutaminase active site was inactivated by a glutamine analogue and the unstable cyclase substrate was cryo-trapped in the active site. The orientation of N(1)-(5'-phosphoribulosyl)-formimino-5-aminoimidazole-4-carboxamide ribonucleotide in the cyclase active site implicates one side of the cyclase domain in signaling to the glutaminase domain. This side of the cyclase domain contains the interdomain hinge. Two interdomain hydrogen bonds, which do not exist in more open forms of the enzyme, are proposed as molecular signals. One hydrogen bond connects the cyclase domain to the substrate analogue in the glutaminase active site. The second hydrogen bond connects to a peptide that forms an oxyanion hole for stabilization of transient negative charge during glutamine hydrolysis. Peptide rearrangement induced by a fully closed domain interface is proposed to activate the glutaminase by unblocking the oxyanion hole. This interpretation is consistent with biochemical results [Myers, R. S., et al., (2003) Biochemistry 42, 7013-7022, the accompanying paper in this issue] and with structures of the free enzyme and a binary complex with a second glutamine analogue.  相似文献   

8.
CTP synthetase (CTPs) catalyzes the last step in CTP biosynthesis, in which ammonia generated at the glutaminase domain reacts with the ATP-phosphorylated UTP at the synthetase domain to give CTP. Glutamine hydrolysis is active in the presence of ATP and UTP and is stimulated by the addition of GTP. We report the crystal structures of Thermus thermophilus HB8 CTPs alone, CTPs with 3SO4(2-), and CTPs with glutamine. The enzyme is folded into a homotetramer with a cross-shaped structure. Based on the binding mode of sulfate anions to the synthetase site, ATP and UTP are computer modeled into CTPs with a geometry favorable for the reaction. Glutamine bound to the glutaminase domain is situated next to the triad of Glu-His-Cys as a catalyst and a water molecule. Structural information provides an insight into the conformational changes associated with the binding of ATP and UTP and the formation of the GTP binding site.  相似文献   

9.
Imidazole glycerol phosphate (IGP) synthase, a triad glutamine amidotransferase, catalyzes the fifth step in the histidine biosynthetic pathway, where ammonia from glutamine is incorporated into N1-[(5'-phosphoribulosyl)-formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR) to yield IGP and 5'-(5-aminoimidazole-4-carboxamide) ribonucleotide (AICAR). The triad family of glutamine amidotransferases is formed by the coupling of two disparate subdomains, an acceptor domain and a glutamine hydrolysis domain. Each of the enzymes in this family share a common glutaminase domain for which the glutaminase activity is tightly regulated by an acceptor substrate domain. In IGP synthase the glutaminase and PRFAR binding sites are separated by 30 A. Using kinetic analyses of site-specific mutants and molecular dynamic simulations, we have determined that an interdomain salt bridge in IGP synthase between D359 and K196 (approximately 16 A from the PRFAR binding site) plays a key role in mediating communication between the two active sites. This interdomain contact modulates the glutaminase loop containing the histidine and glutamic acid of the catalytic triad to control glutamine hydrolysis. We propose this to be a general principle of catalytic coupling that may be applied to the entire triad glutamine amidotransferase family.  相似文献   

10.
Li KK  Beeson WT  Ghiviriga I  Richards NG 《Biochemistry》2007,46(16):4840-4849
X-ray crystal structures of glutamine-dependent amidotransferases in their "active" conformation have revealed the existence of multiple active sites linked by solvent inaccessible intramolecular channels, giving rise to the widely accepted view that ammonia released in a glutaminase site is channeled efficiently into a separate synthetase site where it undergoes further reaction. We now report a very convenient isotope-edited 1H NMR-based assay that can be used to probe the transfer of ammonia between the active sites of amidotransferases and demonstrate its use in studies of Escherichia coli asparagine synthetase B (AS-B). Our NMR results suggest that (i) high glutamine concentrations do not suppress ammonia-dependent asparagine formation in this bacterial asparagine synthetase and (ii) ammonia in bulk solution can react with the thioester intermediate formed during the glutaminase half-reaction by accessing the N-terminal active site of AS-B during catalytic turnover. These observations are consistent with a model in which exogenous ammonia can access the intramolecular tunnel in AS-B during glutamine-dependent asparagine synthesis, in contrast to expectations based on studies of class I amidotransferases.  相似文献   

11.
An improved method was developed to align related protein sequences and search for homology. A glutamine amide transfer domain was identified in an NH2-terminal segment of GMP synthetase from Escherichia coli. Amino acid residues 1-198 in GMP synthetase are homologous with the glutamine amide transfer domain in trpG X D-encoded anthranilate synthase component II-anthranilate phosphoribosyltransferase and the related pabA-encoded p-aminobenzoate synthase component II. This result supports a model for gene fusion in which a trpG-related glutamine amide transfer domain was recruited to augment the function of a primitive NH3-dependent GMP synthetase. Sequence analyses emphasize that glutamine amide transfer domains are thus far found only at the NH2 terminus of fused proteins. Two rules are formulated to explain trpG and trpG-related fusions. (i) trpG and trpG-related genes must have translocated immediately up-stream of genes destined for fusion in order to position a glutamine amide transfer domain at the NH2 terminus after fusion. (ii) trpG and trpG-related genes could not translocate adjacent to a regulatory region at the 5' end of an operon. These rules explain known trpG-like fusions and explain why trpG and pabA are not fused to trpE and pabB, respectively. Alignment searches of GMP synthetase with two other enzymes that bind GMP, E. coli amidophosphoribosyltransferase and human hypoxanthine-guanine phosphoribosyltransferase, suggest a structurally homologous segment which may constitute a GMP binding site.  相似文献   

12.
Anand R  Hoskins AA  Stubbe J  Ealick SE 《Biochemistry》2004,43(32):10328-10342
Formylglycinamide ribonucleotide amidotransferase (FGAR-AT) catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to formylglycinamidine ribonucleotide (FGAM), ADP, P(i), and glutamate in the fourth step of the purine biosynthetic pathway. In eukaryotes and Gram-negative bacteria, FGAR-AT is encoded by the purL gene as a multidomain protein with a molecular mass of about 140 kDa. In Gram-positive bacteria and archaebacteria FGAR-AT is a complex of three proteins: PurS, PurL, and PurQ. We have determined the structure of FGAR-AT (PurL) from Salmonella typhimurium at 1.9 A resolution using X-ray crystallography. PurL is the last remaining enzyme in the purine biosynthetic pathway to have its structure determined. The structure reveals four domains: an N-terminal domain structurally homologous to a PurS dimer, a linker region, an FGAM synthetase domain homologous to an aminoimidazole ribonucleotide synthetase (PurM) dimer, and a triad glutaminase domain. The domains are intricately linked by interdomain interactions and peptide connectors. The fold common to PurM and the central region of PurL represents a superfamily for which HypE, SelD, and ThiL are predicted to be members. A structural ADP molecule was found bound to a site related to the putative active site by pseudo-2-fold symmetry and two sulfate ions were found at the putative active site. These observations and the structural similarities between PurM and StPurL were used to model the substrates FGAR and ATP in the StPurL active site. A glutamylthioester intermediate was found in the glutaminase domain at Cys1135. The N-terminal (PurS-like) domain is hypothesized to form the putative channel through which ammonia passes from the glutaminase domain to the FGAM synthetase domain.  相似文献   

13.
Glucosamine-6-phosphate synthase channels ammonia over 18 A from glutamine at the glutaminase site to fructose-6P at the synthase site. We have modeled the anisotropic displacements of the glutaminase and synthase domains from the two crystallized states, the enzyme in complex with fructose-6P or in complex with glucose-6P and a glutamine affinity analog, using TLS (rigid-body motion in terms of translation, libration, and screw motions) refinement implemented in REFMAC. The domains displacements in the crystal lattices are compared to the movement of the glutaminase domain relative to the synthase domain that occurs during the catalytic cycle upon glutamine binding, which was visualized by comparing the two structures. This movement was analyzed by the program DYNDOM as a 22.8 degrees rotation around an effective hinge axis running approximately parallel to helix 300-317 of the synthase domain, the glutaminase loop that covers the glutaminase site upon glutamine binding acting as the mechanical hinge.  相似文献   

14.
The short-term metabolic fate of labeled nitrogen derived from [13N]ammonia or from L-[amide-13N]glutamine was determined in murine tumors known to be resistant (Ridgeway Osteogenic Sarcoma (ROS] or sensitive (Sarcoma-180 (S-180)) to glutaminase therapy. At 5 min after intraperitoneal injection of [13N]ammonia or of L-[amide-13N]glutamine, only about 0.7% of the label recovered in both tumors was in protein and nucleic acid. After [13N]ammonia administration, most of the label (over 80%) was in a metabolized form; a large portion of this metabolized label (50-57%) was in the urea fraction with a smaller amount in glutamine (37-42%). The major short-term fate of label derived from L-[amide-13N]glutamine was incorporation into components of the urea cycle with smaller amounts in the acidic metabolites and in acidic amino acids. No labeled urea was found during in vitro studies in which S-180 tumor slices were incubated with [13N]ammonia, suggesting that the [13N]urea formed in the tumor in the in vivo experiments was not due to de novo synthesis through carbamyl phosphate in the tumor. Both tumors exhibited very low glutamine synthetase activity. Following glutaminase treatment, glutamine synthetase and gamma-glutamyltransferase activities, while remaining low, increased in the resistant tumor but not in the sensitive tumor; this increase may be related to the insensitivity of the ROS tumor toward glutaminase treatment.  相似文献   

15.
NAD synthetase catalyzes the final step in the biosynthesis of NAD. In the present study, we obtained cDNAs for two types of human NAD synthetase (referred as NADsyn1 and NADsyn2). Structural analysis revealed in both NADsyn1 and NADsyn2 a domain required for NAD synthesis from ammonia and in only NADsyn1 an additional carbon-nitrogen hydrolase domain shared with enzymes of the nitrilase family that cleave nitriles as well as amides to produce the corresponding acids and ammonia. Consistent with the domain structures, biochemical assays indicated (i) that both NADsyn1 and NADsyn2 have NAD synthetase activity, (ii) that NADsyn1 uses glutamine as well as ammonia as an amide donor, whereas NADsyn2 catalyzes only ammonia-dependent NAD synthesis, and (iii) that mutant NADsyn1 in which Cys-175 corresponding to the catalytic cysteine residue in nitrilases was replaced with Ser does not use glutamine. Kinetic studies suggested that glutamine and ammonia serve as physiological amide donors for NADsyn1 and NADsyn2, respectively. Both synthetases exerted catalytic activity in a multimeric form. In the mouse, NADsyn1 was seen to be abundantly expressed in the small intestine, liver, kidney, and testis but very weakly in the skeletal muscle and heart. In contrast, expression of NADsyn2 was observed in all tissues tested. Therefore, we conclude that humans have two types of NAD synthetase exhibiting different amide donor specificity and tissue distributions. The ammonia-dependent synthetase has not been found in eucaryotes until this study. Our results also indicate that the carbon-nitrogen hydrolase domain is the functional domain of NAD synthetase to make use of glutamine as an amide donor in NAD synthesis. Thus, glutamine-dependent NAD synthetase may be classified as a possible glutamine amidase in the nitrilase family. Our molecular identification of NAD synthetases may prove useful to learn more of mechanisms regulating cellular NAD metabolism.  相似文献   

16.
Huang X  Raushel FM 《Biochemistry》2000,39(12):3240-3247
The heterodimeric carbamoyl phosphate synthetase (CPS) from Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of ATP. The enzyme catalyzes the hydrolysis of glutamine within the small amidotransferase subunit and then transfers ammonia to the two active sites within the large subunit. These three active sites are connected via an intermolecular tunnel, which has been located within the X-ray crystal structure of CPS from E. coli. It has been proposed that the ammonia intermediate diffuses through this molecular tunnel from the binding site for glutamine within the small subunit to the phosphorylation site for bicarbonate within the large subunit. To provide experimental support for the functional significance of this molecular tunnel, residues that define the interior walls of the "ammonia tunnel" within the small subunit were targeted for site-directed mutagenesis. These structural modifications were intended to either block or impede the passage of ammonia toward the large subunit. Two mutant proteins (G359Y and G359F) display kinetic properties consistent with a constriction or blockage of the ammonia tunnel. With both mutants, the glutaminase and bicarbonate-dependent ATPase reactions have become uncoupled from one another. However, these mutant enzymes are fully functional when external ammonia is utilized as the nitrogen source but are unable to use glutamine for the synthesis of carbamoyl-P. These results suggest the existence of an alternate route to the bicarbonate phosphorylation site when ammonia is provided as an external nitrogen source.  相似文献   

17.
BACKGROUND: Imidazole glycerol phosphate synthase catalyzes a two-step reaction of histidine biosynthesis at the bifurcation point with the purine de novo pathway. The enzyme is a new example of intermediate channeling by glutamine amidotransferases in which ammonia generated by hydrolysis of glutamine is channeled to a second active site where it acts as a nucleophile. In this case, ammonia reacts in a cyclase domain to produce imidazole glycerol phosphate and an intermediate of purine biosynthesis. The enzyme is also a potential target for drug and herbicide development since the histidine pathway does not occur in mammals. RESULTS: The 2.1 A crystal structure of imidazole glycerol phosphate synthase from yeast reveals extensive interaction of the glutaminase and cyclase catalytic domains. At the domain interface, the glutaminase active site points into the bottom of the (beta/alpha)(8) barrel of the cyclase domain. An ammonia tunnel through the (beta/alpha)(8) barrel connects the glutaminase docking site at the bottom to the cyclase active site at the top. A conserved "gate" of four charged residues controls access to the tunnel. CONCLUSIONS: This is the first structure in which all the components of the ubiquitous (beta/alpha)(8) barrel fold, top, bottom, and interior, take part in enzymatic function. Intimate contacts between the barrel domain and the glutaminase active site appear to be poised for crosstalk between catalytic centers in response to substrate binding at the cyclase active site. The structure provides a number of potential sites for inhibitor development in the active sites and in a conserved interdomain cavity.  相似文献   

18.
Glucosamine-6P synthase catalyzes the synthesis of glucosamine-6P from fructose-6P and glutamine and uses a channel to transfer ammonia from its glutaminase to its synthase active site. X-ray structures of glucosamine-6P synthase have been determined at 2.05 Angstroms resolution in the presence of fructose-6P and at 2.35 Angstroms resolution in the presence of fructose-6P and 6-diazo-5-oxo-L-norleucine, a glutamine affinity analog that covalently modifies the N-terminal catalytic cysteine, therefore mimicking the gamma-glutamyl-thioester intermediate formed during hydrolysis of glutamine. The fixation of the glutamine analog activates the enzyme through several major structural changes: 1) the closure of a loop to shield the glutaminase site accompanied by significant domain hinging, 2) the activation of catalytic residues involved in glutamine hydrolysis, i.e. the alpha-amino group of Cys-1 and Asn-98 that is positioned to form the oxyanion hole, and 3) a 75 degrees rotation of the Trp-74 indole group that opens the ammonia channel.  相似文献   

19.
Mammalian carbamoyl-phosphate synthetase is part of carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (CAD), a multifunctional protein that also catalyzes the second and third steps of pyrimidine biosynthesis. Carbamoyl phosphate synthesis requires the concerted action of the glutaminase (GLN) and carbamoyl-phosphate synthetase domains of CAD. There is a functional linkage between these domains such that glutamine hydrolysis on the GLN domain does not occur at a significant rate unless ATP and HCO(3)(-), the other substrates needed for carbamoyl phosphate synthesis, bind to the synthetase domain. The GLN domain consists of catalytic and attenuation subdomains. In the separately cloned GLN domain, the catalytic subdomain is down-regulated by interactions with the attenuation domain, a process thought to be part of the functional linkage. Replacement of Ser(44) in the GLN attenuation domain with alanine increases the k(cat)/K(m) for glutamine hydrolysis 680-fold. The formation of a functional hybrid between the mammalian Ser(44) GLN domain and the Escherichia coli carbamoyl-phosphate synthetase large subunit had little effect on glutamine hydrolysis. In contrast, ATP and HCO(3)(-) did not stimulate the glutaminase activity, indicating that the interdomain linkage had been disrupted. In accord with this interpretation, the rate of glutamine hydrolysis and carbamoyl phosphate synthesis were no longer coordinated. Approximately 3 times more glutamine was hydrolyzed by the Ser(44) --> Ala mutant than that needed for carbamoyl phosphate synthesis. Ser(44), the only attenuation subdomain residue that extends into the GLN active site, appears to be an integral component of the regulatory circuit that phases glutamine hydrolysis and carbamoyl phosphate synthesis.  相似文献   

20.
Glutamine is synthesized in skeletal muscle, released to the circulation, and transported to other tissues, where it may provide important substrate for gluconeogenesis, ammoniagenesis, and energy-yielding pathways. With the ultimate goal of delineating the factors that control glutamine production and release by skeletal muscle, we have studied the regulation of two key enzymes, glutamine synthetase and glutaminase, in the L6 line of rat skeletal muscle cells grown in monolayer culture. The cultured myotubes were found to have glutamine synthetase and phosphate-dependent glutaminase activities. Glutamine synthetase activity was increased following incubation (1) in glutamine-free medium (threefold); (2) in medium containing high glutamic acid concentrations (fourfold); and (3) in medium supplemented with dexamethasone (threefold). In each case the increase in glutamine synthetase activity required several hours to reach a maximum and was prevented by cycloheximide, suggesting that the change occurred through increased enzyme biosynthesis. No substances tested were found to affect glutaminase activity. We conclude that glutamine synthetase in cultured skeletal muscle is responsive to substrate, product, and hormonal regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号