首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins of the CLC family are comprised of two subunits, each with its own fast-gated protopore, both of these being regulated simultaneously by a slower common gate. Based on the X-ray crystal structure of a bacterial CLC, the carboxyl side chain of glutamate residue E232 has been proposed as the fast gate of hClC-1, swinging into each pore to close it and competing with chloride. We now show, using hClC-1 mutants expressed in whole-cell patch-clamped HEK293 cells, that elimination of this side chain in the E232Q mutation prevents fast gate closure at all voltages but common gating is also eliminated suggesting that E232 could be the final effector of both fast and common gating. We hypothesise that the conformational information essential for common gating flows between the two E232 protopore residues across the intra-membrane interface, rather than via any cytoplasmic carboxyl-tail interface, to drive common gating. Informed by in silico modelling, we have produced five site-directed mutants that increase the volumes of residues which might be involved in allosteric transfer (A272V, A272L, S289L, V292L and T293L) and assessed them for effects on gating. These mutations could be expected to increase molecular forces between, or torques around, the intimate L287–L287 and I290–I290 contacts that form the pseudo-asymmetric axis of the hClC-1 dimer. Common gating is practically eliminated in V292L and open probability is shifted to more depolarised potentials in A272V, S289L and T293L mainly by altering the voltage dependence of common gating.  相似文献   

2.
Voltage-gated Cl channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their native configurations exhibit similar sedimentation properties consistent with a multimeric complex having a molecular mass of a dimer. Expression of the heterodimeric channel in a mammalian cell line results in a homogenous population of Cl channels exhibiting novel gating properties that are best explained by the formation of heteromultimeric channels with an even number of subunits. Heteromultimeric channels were not evident in cells cotransfected with homodimeric WT-WT and D136G-D136G constructs excluding the possibility that functional hClC-1 channels are assembled from more than two subunits. These results demonstrate that the functional hClC-1 unit consists of two subunits.  相似文献   

3.
Recent reports suggest that four S6 C-termini may jointly close the voltage-gated cation channel at the cytoplasmic side, probably as an inverted teepee structure. In this study we substituted individually a total of 18 residues at D1S6 and D4S6 C-terminal ends of the rNav1.4 Na(+) channel alpha-subunit with tryptophan (W) and examined their corresponding gating properties when expressed in Hek293t cells along with beta1 subunit. Several W-mutants displayed significant changes in activation, fast inactivation, and/or slow inactivation gating. In particular, five S6 W-mutants showed incomplete fast inactivation with noninactivating maintained currents present. Cysteine (C) substitutions of these five residues resulted in two mutants with slightly more maintained currents. Multiple substitutions at these five positions yielded two mutants (L437C/A438W, L435W/L437C/A438W) that exhibited phenotypes with minimal fast inactivation. Unexpectedly, such inactivation-deficient mutants expressed Na(+) currents as well as did the wild-type. Furthermore, all mutants with impaired fast inactivation exhibited an enhanced slow inactivation phenotype. Implications of these results will be discussed in terms of indirect allosteric modulations via amino acid substitutions and/or a direct involvement of S6 C-termini in Na(+) channel gating.  相似文献   

4.
Voltage-gated Cl channels belonging to the ClC family exhibit unique properties of ion permeation and gating. We functionally probed the conduction pathway of a recombinant human skeletal muscle Cl channel (hClC-1) expressed both in Xenopus oocytes and in a mammalian cell line by investigating block by extracellular or intracellular I and related anions. Extracellular and intracellular I exert blocking actions on hClC-1 currents that are both concentration and voltage dependent. Similar actions were observed for a variety of other halide (Br) and polyatomic (SCN, NO3 , CH3SO3 ) anions. In addition, I block is accompanied by gating alterations that differ depending on which side of the membrane the blocker is applied. External I causes a shift in the voltage-dependent probability that channels exist in three definable kinetic states (fast deactivating, slow deactivating, nondeactivating), while internal I slows deactivation. These different effects on gating properties can be used to distinguish two functional ion binding sites within the hClC-1 pore. We determined K D values for I block in three distinct kinetic states and found that binding of I to hClC-1 is modulated by the gating state of the channel. Furthermore, estimates of electrical distance for I binding suggest that conformational changes affecting the two ion binding sites occur during gating transitions. These results have implications for understanding mechanisms of ion selectivity in hClC-1, and for defining the intimate relationship between gating and permeation in ClC channels.  相似文献   

5.
Single-molecule spectroscopies in combination with single-channel patch-clamp measurements have the potential for providing new information on ion channel gating processes. Fluorescent gramicidin derivatives could provide a means for calibrating such experiments since the structure of the open channel is known and the mechanism of gating (peptide dimerization) is generally agreed. We describe here the synthesis and characterization of two pairs of gramicidin derivatives that should prove useful for such studies. They contain robust fluorophores, undergo resonance energy transfer (FRET) when they dimerize, and have single-channel properties close to those of the wild-type channel.  相似文献   

6.
Gating of the muscle chloride channel CLC-1 involves at least two processes evidenced by double-exponential current relaxations when stepping the voltage to negative values. However, there is little information about the gating of CLC-1 at positive voltages. Here, we analyzed macroscopic gating of CLC-1 over a large voltage range (from -160 to +200 mV). Activation was fast at positive voltages but could be easily followed using envelope protocols that employed a tail pulse to -140 mV after stepping the voltage to a certain test potential for increasing durations. Activation was biexponential, demonstrating the presence of two gating processes. Both time constants became exponentially faster at positive voltages. A similar voltage dependence was also seen for the fast gate time constant of CLC-0. The voltage dependence of the time constant of the fast process of CLC-1, tau(f), was steeper than that of the slow one, tau(s) (apparent activation valences were z(f) approximately -0. 79 and z(s) approximately -0.42) such that at +200 mV the two processes became kinetically distinct by almost two orders of magnitude (tau(f) approximately 16 micros, tau(s) approximately 1 ms). This voltage dependence is inconsistent with a previously published gating model for CLC-1 (Fahlke, C., A. Rosenbohm, N. Mitrovic, A.L. George, and R. Rüdel. 1996. Biophys. J. 71:695-706). The kinetic difference at 200 mV allowed us to separate the steady state open probabilities of the two processes assuming that they reflect two parallel (not necessarily independent) gates that have to be open simultaneously to allow ion conduction. Both open probabilities could be described by Boltzmann functions with gating valences around one and with nonzero "offsets" at negative voltages, indicating that the two "gates" never close completely. For comparison with single channel data and to correlate the two gating processes with the two gates of CLC-0, we characterized their voltage, pH(int), and [Cl](ext) dependence, and the dominant myotonia inducing mutation, I290M. Assuming a double-barreled structure of CLC-1, our results are consistent with the identification of the fast and slow gating processes with the single-pore and the common-pore gate, respectively.  相似文献   

7.
Ion channels are dynamic multimeric proteins that often undergo multiple unsynchronized structural movements as they switch between their open and closed states. Such structural changes are difficult to measure within the context of a native lipid bilayer and have often been monitored via macroscopic changes in Förster resonance energy transfer (FRET) between probes attached to different parts of the protein. However, the resolution of this approach is limited by ensemble averaging of structurally heterogeneous subpopulations. These problems can be overcome by measurement of FRET in single molecules, but this presents many challenges, in particular the ability to control labeling of subunits within a multimeric protein with acceptor and donor fluorophores, as well as the requirement to image large numbers of individual molecules in a membrane environment. To address these challenges, we randomly labeled tetrameric KirBac1.1 potassium channels, reconstituted them into lipid nanodiscs, and performed single-molecule FRET confocal microscopy with alternating-laser excitation as the channels diffused in solution. These solution-based single-molecule FRET measurements of a multimeric ion channel in a lipid bilayer have allowed us to probe the structural changes that occur upon channel activation and inhibition. Our results provide direct evidence of the twist-to-shrink movement of the helix bundle crossing during channel gating and demonstrate how this method might be applied to real-time structural studies of ion channel gating.  相似文献   

8.
Kir1.1 channels are important in maintaining K+ homeostasis in the kidney. Intracellular acidification reversibly closes the Kir1.1 channel and thus decreases K+ secretion. In this study, we used Foster resonance energy transfer (FRET) to determine whether the conformation of the cytoplasmic pore changes in response to intracellular pH (pHi)-gating in Kir1.1 channels fused with enhanced cyan fluorescent protein (ECFP) and enhanced yellow fluorescent protein (EYFP) (ECFP-Kir1.1-EYFP). Because the fluorescence intensities of ECFP and EYFP were affected at pHi < 7.4 where pHi-gating occurs in the ECFP-Kir1.1-EYFP construct, we examined the FRET efficiencies of an ECFP-S219R-EYFP mutant, which is completed closed at pHi 7.4 and open at pHi 10.0. FRET efficiency was increased from 25% to 40% when the pHi was decreased from 10.0 to 7.4. These results suggest that the conformation of the cytoplasmic pore in the Kir1.1 channel changes in response to pHi gating such that the N- and C-termini move apart from each other at pHi 7.4, when the channel is open.  相似文献   

9.
Gap junction channel gating   总被引:8,自引:0,他引:8  
Over the last two decades, the view of gap junction (GJ) channel gating has changed from one with GJs having a single transjunctional voltage-sensitive (V(j)-sensitive) gating mechanism to one with each hemichannel of a formed GJ channel, as well as unapposed hemichannels, containing two, molecularly distinct gating mechanisms. These mechanisms are termed fast gating and slow or 'loop' gating. It appears that the fast gating mechanism is solely sensitive to V(j) and induces fast gating transitions between the open state and a particular substate, termed the residual conductance state. The slow gating mechanism is also sensitive to V(j), but there is evidence that this gate may mediate gating by transmembrane voltage (V(m)), intracellular Ca(2+) and pH, chemical uncouplers and GJ channel opening during de novo channel formation. A distinguishing feature of the slow gate is that the gating transitions appear to be slow, consisting of a series of transient substates en route to opening and closing. Published reports suggest that both sensorial and gating elements of the fast gating mechanism are formed by transmembrane and cytoplamic components of connexins among which the N terminus is most essential and which determines gating polarity. We propose that the gating element of the slow gating mechanism is located closer to the central region of the channel pore and serves as a 'common' gate linked to several sensing elements that are responsive to different factors and located in different regions of the channel.  相似文献   

10.
The virtual hair cell we have proposed utilizes a set of parameters related to its mechanoelectric transduction. In this work, we observed the effect of such channel gating parameters as the gating threshold, critical tension, resting tension, and Ca(2+) concentration. The gating threshold is the difference between the resting and channel opening tension exerted by the tip link assembly on the channel. The critical tension is the tension in the tip link assembly over which the channel cannot close despite Ca(2+) binding. Our results show that 1), the gating threshold dominated the initial sensitivity of the hair cell; 2), the critical tension minimally affects the peak response, (I), but considerably affects the time course of response, I(t), and the force-displacement, F-X, relationship; and 3), higher intracellular [Ca(2+)] resulted in a smaller fast adaptation time constant. Based on the simulation results we suggest a role of the resting tension: to help overcome the viscous drag of the hair bundle during the oscillatory movement of the bundle. Also we observed the three-dimensional bundle effect on the hair cell response by varying the number of cilia forced. These varying forcing conditions affected the hair cell response.  相似文献   

11.
Intracellular regions of voltage-gated potassium channels often comprise the largest part of the channel protein, and yet the functional role of these regions is not fully understood. For the Kv2.1 channel, although there are differences in activation kinetics between rat and human channels, there are, for instance, no differences in movement of the S4 region between the two channels, and indeed our mutagenesis studies have identified interacting residues in both the N- and C -terminal intracellular regions that are responsible for these functional effects. Furthermore, using FRET with fluorescent-tagged Kv2.1 channels, we have shown movement of the C-termini relative to the N-termini during activation. Such interactions and movements of the intracellular regions of the channel appear to form part of the channel gating machinery. Heag1 and heag2 channels also display differing activation properties, despite their considerable homology. By a chimeric approach, we have shown that these differences in activation kinetics are determined by multiple interacting regions in the N-terminus and membrane-spanning regions. Furthermore, alanine mutations of many residues in the C-terminal cyclic nucleotide binding domain affect activation kinetics. The data again suggest interacting regions between N- and C- termini that participate in the conformational changes during channel activation. Using a mass-spectrometry approach, we have identified α-tubulin and a heat shock protein as binding to the C-terminus of the heag2 channel, and α-tubulin itself has functional effects on channel activation kinetics. Clearly, the intracellular regions of these ion channels (and most likely many other ion channels too) are important regions in determining channel function. EBSA Satellite Meeting: Ion channels, Leeds, July 2007.  相似文献   

12.
Animal and plant voltage-gated ion channels share a common architecture. They are made up of four subunits and the positive charges on helical S4 segments of the protein in animal K+ channels are the main voltage-sensing elements. The KAT1 channel cloned from Arabidopsis thaliana, despite its structural similarity to animal outward rectifier K+ channels is, however, an inward rectifier. Here we detected KAT1-gating currents due to the existence of an intrinsic voltage sensor in this channel. The measured gating currents evoked in response to hyperpolarizing voltage steps consist of a very fast (tau = 318 +/- 34 micros at -180 mV) and a slower component (4.5 +/- 0.5 ms at -180 mV) representing charge moved when most channels are closed. The observed gating currents precede in time the ionic currents and they are measurable at voltages (less than or equal to -60) at which the channel open probability is negligible ( approximately 10-4). These two observations, together with the fact that there is a delay in the onset of the ionic currents, indicate that gating charge transits between several closed states before the KAT1 channel opens. To gain insight into the molecular mechanisms that give rise to the gating currents and lead to channel opening, we probed external accessibility of S4 domain residues to methanethiosulfonate-ethyltrimethylammonium (MTSET) in both closed and open cysteine-substituted KAT1 channels. The results demonstrate that the putative voltage-sensing charges of S4 move inward when the KAT1 channels open.  相似文献   

13.
We used cell lines expressing wild-type connexin43 (Cx43) and Cx43 fused with enhanced green fluorescent protein (Cx43-EGFP) to examine mechanisms of gap junction channel gating. Previously it was suggested that each hemichannel in a cell-cell channel possesses two gates, a fast gate that closes channels to a nonzero conductance or residual state via fast (< approximately 2 ms) transitions and a slow gate that fully closes channels via slow transitions (> approximately 10 ms). Here we demonstrate that transjunctional voltage (V(j)) regulates both gates and that they are operating in series and in a contingent manner in which the state of one gate affects gating of the other. Cx43-EGFP channels lack fast V(j) gating to a residual state but show slow V(j) gating. Both Cx43 and Cx43-EGFP channels exhibit slow gating by chemical uncouplers such as CO(2) and alkanols. Chemical uncouplers do not induce obvious changes in Cx43-EGFP junctional plaques, indicating that uncoupling is not caused by dispersion or internalization of junctional plaques. Similarity of gating transitions during chemical gating and slow V(j) gating suggests that both gating mechanisms share common structural elements. Cx43/Cx43-EGFP heterotypic channels showed asymmetrical V(j) gating with fast transitions between open and residual states only when the Cx43 side was relatively negative. This result indicates that the fast V(j) gate of Cx43 hemichannels closes for relative negativity at its cytoplasmic end.  相似文献   

14.
Heat-sensitive transient receptor potential (TRP) channels (TRPV1-4) form the major cellular sensors for detecting temperature increases. Homomeric channels formed by thermosensitive TRPV subunits exhibit distinct temperature thresholds. While these subunits do share significant sequence similarity, whether they can coassemble into heteromeric channels has been controversial. In the present study we investigated the coassembly of TRPV subunits using both spectroscopy-based fluorescence resonance energy transfer (FRET) and single-channel recordings. Fluorescent protein-tagged TRPV subunits were coexpressed in HEK 293 cells; FRET between different subunits was measured as an indication of the formation of heteromeric channels. We observed strong FRET when fluorescence signals were collected selectively from the plasma membrane using a "spectra FRET" approach but much weaker or no FRET from intracellular fluorescence. In addition, no FRET was detected when TRPV subunits were coexpressed with members of the TRPM subfamily or CLC-0 chloride channel subunits. These results indicate that a substantial fraction of TRP channels in the plasma membrane of cotransfected cells were heteromeric. Single-channel recordings confirmed the existence of multiple heteromeric channel forms. Interestingly, heteromeric TRPV channels exhibit intermediate conductance levels and gating kinetic properties. As these subunits coexpress both in sensory neurons and in other tissues, including heart and brain, coassembly between TRPV subunits may contribute to greater functional diversity.  相似文献   

15.
Expression of the scavenger receptor class B, type I (SR-BI) receptor facilitates high density lipoprotein cholesterol transport and correlates with protection against atherosclerosis. Studies have shown that SR-BI self-associates, but many of the techniques used to characterize SR-BI homo-oligomerization were wrought with the prospect of producing artifacts. Therefore, we employed fluorescence resonance energy transfer (FRET) to visualize SR-BI homo-oligomerization with the benefit of gaining information about its quaternary structure in the absence of typical membrane receptor artifacts. To this end, SR-BI was tagged at the N- or C-termini with either cyan (CFP) or yellow (YFP) fluorescent protein. To test whether SR-BI subunits oligomerize through N-N, N-C or C-C terminal interactions, we co-expressed the appropriate SR-BI fusion protein combinations in COS-7 cells and measured live-cell FRET following acceptor photobleaching. We did not observe FRET with co-transfection of SR-BI with CFP and YFP at the N-termini nor at the N- and C-termini, suggesting that the N-termini are not proximal to each other or to the C-termini. However, FRET was observed with co-transfection of SR-BI with CFP and YFP at the C-termini, suggesting that the C-terminal ends are within 10 nm of each other, consistent with SR-BI dimerization via its C-terminal region.  相似文献   

16.
Human ClC-2 Cl(-) (hClC-2) channels are activated by protein kinase A (PKA) and low extracellular pH(o). Both of these effects are prevented by the PKA inhibitor, myristoylated PKI. The aims of the present study were to identify the PKA phosphorylation site(s) important for PKA activation of hClC-2 at neutral and low pH(o) and to examine the relationship between PKA and low pH(o) activation. Recombinant hClC-2 with point mutations of consensus phosphorylation sites was prepared and stably expressed in HEK-293 cells. The responses to forskolin plus isobutylmethylxanthine at neutral and acidic pH(o) were studied by whole cell patch clamp in the presence and absence of phosphatase inhibitors. The double phosphorylation site (RRAT655(A) plus RGET691(A)) mutant hClC-2 lost PKA activation and low pH(o) activation. Either RRAT or RGET was sufficient for PKA activation of hClC-2 at pH(o) 7.4, as long as phosphatase inhibitors (cyclosporin A or endothal) were present. At pH(o) 6 only RGET was needed for PKA activation of hClC-2. Low pH(o) activation of hClC-2 Cl(-) channel activity was PKA-dependent, retained in RGET(A) mutant hClC-2, but lost in RRAT(A) mutant hClC-2. RRAT655(D) mutant hClC-2 was constitutively active and was further activated by PKA at pH(o) 7.4 and 6.0, consistent with the above findings. These results show that activation of hClC-2 is differentially regulated by PKA at two sites, RRAT655 and RGET691. Either RRAT655 or RGET691 was sufficient for activation at pH(o) 7.4. RGET, but not RRAT, was sufficient for activation at pH(o) 6.0. However, in the RGET691(D) mutant, there was PKA activation at pH(o) 6.0.  相似文献   

17.
Gap-junction (GJ) channels formed from connexin (Cx) proteins provide direct pathways for electrical and metabolic cell-cell communication. Earlier, we developed a stochastic 16-state model (S16SM) of voltage gating of the GJ channel containing two pairs of fast and slow gates, each operating between open (o) and closed (c) states. However, experimental data suggest that gates may in fact contain two or more closed states. We developed a model in which the slow gate operates according to a linear reaction scheme, o↔c1↔c2, where c1 and c2 are initial-closed and deep-closed states that both close the channel fully, whereas the fast gate operates between the open state and the closed state and exhibits a residual conductance. Thus, we developed a stochastic 36-state model (S36SM) of GJ channel gating that is sensitive to transjunctional voltage (Vj). To accelerate simulation and eliminate noise in simulated junctional conductance (gj) records, we transformed an S36SM into a Markov chain 36-state model (MC36SM) of GJ channel gating. This model provides an explanation for well-established experimental data, such as delayed gj recovery after Vj gating, hysteresis of gj-Vj dependence, and the low ratio of functional channels to the total number of GJ channels clustered in junctional plaques, and it has the potential to describe chemically mediated gating, which cannot be reflected using an S16SM. The MC36SM, when combined with global optimization algorithms, can be used for automated estimation of gating parameters including probabilities of c1↔c2 transitions from experimental gj-time and gj-Vj dependencies.  相似文献   

18.
The CLC family of chloride channels and transporters is a functionally diverse group of proteins important in a wide range of physiological processes. ClC-4 and ClC-5 are localized to endosomes and seem to play roles in the acidification of these compartments. These proteins were recently shown to function as Cl/H+ antiporters. However, relatively little is known about the detailed mechanism of CLC-mediated Cl/H+ antiport, especially for mammalian isoforms. We attempted to identify molecular tools that might be useful in probing structure-function relationships in these proteins. Here, we record currents from human ClC-4 (hClC-4) expressed in Xenopus oocytes, and find that Zn2+ inhibits these currents, with an apparent affinity of ∼50 μM. Although Cd2+ has a similar effect, Co2+ and Mn2+ do not inhibit hClC-4 currents. In contrast, the effect of Zn2+ on the ClC-0 channel, Zn2+-mediated inhibition of hClC-4 is minimally voltage-dependent, suggesting an extracellular binding site for the ion. Nine candidate external residues were tested; only mutations of three consecutive histidine residues, located in a single extracellular loop, significantly reduced the effect of Zn2+, with one of these making a larger contribution than the other two. An analogous tri-His sequence is absent from ClC-0, suggesting a fundamentally different inhibitory mechanism for the ion on hClC-4. Manipulations that alter transport properties of hClC-4, varying permeant ions as well as mutating the “gating glutamate”, dramatically affect Zn2+ inhibition, suggesting the involvement of a heretofore unexplored part of the protein in the transport process.  相似文献   

19.
The voltage-gated Kv2.1 channel is composed of four identical subunits folded around the central pore and does not inactivate appreciably during short depolarizing pulses. To study voltage-induced relative molecular rearrangements of the channel, Kv2.1 subunits were genetically fused with enhanced cyan fluorescent protein and/or enhanced yellow fluorescent protein, expressed in COS1 cells, and investigated using fluorescence resonance energy transfer (FRET) microscopy combined with patch clamp. Fusion of fluorophores to either or both termini of the Kv2.1 monomer did not significantly affect the gating properties of the channel. FRET between the N- and C-terminal tags fused to the same or different Kv2.1 monomers decreased upon activation of the channel by depolarization from -80 to +60 mV, suggesting voltage-gated relative rearrangement between the termini. Because FRET between the Kv2.1 N- or C-terminal tags and the membrane-trapped EYFP(N)-PH pleckstrin homology domains did not change on depolarization, voltage-gated relative movements between the Kv2.1 termini occurred in a plane parallel to the plasma membrane, within a distance of 1-10 nm. FRET between the N-terminal tags did not change upon depolarization, indicating that the N termini do not rearrange relative to each other, but they could either move cooperatively with the Kv2.1 tetramer or not move at all. No FRET was detected between the C-terminal tags. Assuming their randomized orientation in the symmetrically arranged Kv2.1 subunits, C termini may move outwards in order to produce relative rearrangements between N and C termini upon depolarization.  相似文献   

20.
ClC-1 is a dimeric, double-pored chloride channel that is present in skeletal muscle. Mutations of this channel can result in the condition myotonia, a muscle disorder involving increased muscle stiffness. It has been shown that the dominant form of myotonia often results from mutations that affect the so-called slow, or common, gating process of the ClC-1 channel. Mutations causing dominant myotonia are seen to cluster at the interface of the ClC-1 channel monomers. This study has investigated the role of the H, I, P, and Q helices, which lie on this interface, as well as the G helix, which is situated immediately behind the H and I helices, on ClC-1 gating. 11 mutant ClC-1 channels (T268M, C277S, C278S, S289A, T310M, S312A, V321S, T539A, S541A, M559T, and S572V) were produced using site-directed mutagenesis, and gating properties of these channels were investigated using electrophysiological techniques. Six of the seven mutations in G, H, and I, and two of the four mutations in P and Q, caused shifts of the ClC-1 open probability. In the majority of cases this was due to alterations in the common gating process, with only three of the mutants displaying any change in fast gating. Many of the mutant channels also showed alterations in the kinetics of the common gating process, particularly at positive potentials. The changes observed in common gating were caused by changes in the opening rate (e.g. T310M), the closing rate (e.g. C277S), or both rates. These results indicate that mutations in the helices forming the dimer interface are able to alter the ClC-1 common gating process by changing the energy of the open and/or closed channel states, and hence altering transition rates between these states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号