首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of population connectivity of the migratory insect species, such as dronefly Eristalis tenax (Diptera, Syrphidae), has an essential importance in understanding the relative influence of the evolutionary forces and environmental features that interact in the spatial distribution of molecular and morphological diversity. However, specific study aiming to understand spatial genetic structure of dronefly populations and its migratory potential is lacking. Hence, we studied a spatial pattern of genetic and phenotypic variation of seven European populations of E. tenax incorporating landscape genetic methods using allozyme data, wing size and shape and abdominal colour pattern. Based on the observed lack of genotypic structuring, we suggested that there has been sufficient long‐distance gene flow to effectively homogenize population structuring at a broader geographical scale. Wing shape similarity among populations and an overlap of abdominal colour variation showed no clear clustering related to geography, which is in congruence with genetic data. However, genetic (FST values) and phenotypic (wing size) data and landscape genetics indicated subdivision between the Balkan populations (four Serbian samples) and populations from Central (Germany and Switzerland) and Northern (Finland) Europe. These findings indicated a potential connection between the Central and Northern Europe supporting the Central European origin of the flies caught in Finland. Thus, by performing spatial analysis and combining genetic–morphological approach, we shed light on the movement pattern in complex landscapes and thus provided the necessary guidelines to a broad‐scale analysis of this widespread generalist pollinator.  相似文献   

2.
Abstract 1. Diversification of some highly host‐specific herbivorous insects may occur in allopatry, without shifts in host use. Such allopatric divergence may be accelerated by sexual selection operating on courtship displays. Wing size and shape may affect visual and vibrational courtship displays in tephritid fruit flies. Geometric morphometric methods were used to examine wings of six sympatric cryptic species in the neotropical genus Blepharoneura. All six species feed on flowers of the same species of host (Gurania spinulosa), a neotropical vine in the Cucurbitaceae. Three of the fly species court and mate in close proximity on the host. Thus, courtship behaviours could serve as important reproductive isolating mechanisms. Two sets of hypotheses were tested: (i) species differ in wing shape and wing size; and (ii) species are sexually dimorphic in wing size and wing shape. Wing size differed among a few species, but wing shape differed significantly among all six species. Sexual dimorphism in wing size was found in only one species, but sexual dimorphism in wing shape was found in two of the three species known to court on the same host plant. In the two sexually dimorphic species, wing shape differed among males, but not among females. This suggests that selection for reproductive character displacement might accelerate divergence in wing shape.  相似文献   

3.
Phenotypic divergence between closely related species has long interested biologists. Taxa that inhabit a range of environments and have diverse natural histories can help understand how selection drives phenotypic divergence. In butterflies, wing color patterns have been extensively studied but diversity in wing shape and size is less well understood. Here, we assess the relative importance of phylogenetic relatedness, natural history, and habitat on shaping wing morphology in a large dataset of over 3500 individuals, representing 13 Heliconius species from across the Neotropics. We find that both larval and adult behavioral ecology correlate with patterns of wing sexual dimorphism and adult size. Species with solitary larvae have larger adult males, in contrast to gregarious Heliconius species, and indeed most Lepidoptera, where females are larger. Species in the pupal‐mating clade are smaller than those in the adult‐mating clade. Interestingly, we find that high‐altitude species tend to have rounder wings and, in one of the two major Heliconius clades, are also bigger than their lowland relatives. Furthermore, within two widespread species, we find that high‐altitude populations also have rounder wings. Thus, we reveal novel adaptive wing morphological divergence among Heliconius species beyond that imposed by natural selection on aposematic wing coloration.  相似文献   

4.
Intralocus sexual conflict occurs when opposing selection pressures operate on loci expressed in both sexes, constraining the evolution of sexual dimorphism and displacing one or both sexes from their optimum. We eliminated intralocus conflict in Drosophila melanogaster by limiting transmission of all major chromosomes to males, thereby allowing them to win the intersexual tug‐of‐war. Here, we show that this male‐limited (ML) evolution treatment led to the evolution (in both sexes) of masculinized wing morphology, body size, growth rate, wing loading, and allometry. In addition to more male‐like size and shape, ML evolution resulted in an increase in developmental stability for males. However, females expressing ML chromosomes were less developmentally stable, suggesting that being ontogenetically more male‐like was disruptive to development. We suggest that sexual selection over size and shape of the imago may therefore explain the persistence of substantial genetic variation in these characters and the ontogenetic processes underlying them.  相似文献   

5.
The evolution of sexual dimorphism in species with separate sexes is influenced by the resolution of sexual conflicts creating sex differences through genetic linkage or sex‐biased expression. Plants with different degrees of sexual dimorphism are thus ideal to study the genetic basis of sexual dimorphism. In this study we explore the genetic architecture of sexual dimorphism between Silene latifolia and Silene dioica. These species have chromosomal sex determination and differ in the extent of sexual dimorphism. To test whether QTL for sexually dimorphic traits have accumulated on the sex chromosomes and to quantify their contribution to species differences, we create a linkage map and performed QTL analysis of life history, flower and vegetative traits using an unidirectional interspecific F2 hybrid cross. We found support for an accumulation of QTL on the sex chromosomes and that sex differences explained a large proportion of the variance between species, suggesting that both natural and sexual selection contributed to species divergence. Sexually dimorphic traits that also differed between species displayed transgressive segregation. We observed a reversal in sexual dimorphism in the F2 population, where males tended to be larger than females, indicating that sexual dimorphism is constrained within populations but not in recombinant hybrids. This study contributes to the understanding of the genetic basis of sexual dimorphism and its evolution in Silene.  相似文献   

6.
The eyes of stalk‐eyed flies (Diopsidae) are positioned at the end of rigid peduncles (‘stalks’) protruding laterally from the head. Eye‐stalk length varies within the family and, in some species, varies between males and females. Larger eye‐stalks in males result from sexual selection for longer stalks, a trait that increases male reproductive success. In the present study, we examined whether an increase in eye‐stalk length results in an adjustment of wing size and shape to deal with the burden of bearing an exaggerated ‘ornament’. We compared wing morphology among ten species of stalk‐eyed flies that differ in eye‐span and the degree of sexual dimorphism. Mass‐specific wing length differed between males and females in seven out of the ten species. Nondimensional wing shape parameters differed between the species (P < 0.001), but mostly did not differ between males and females of the same species. Dimorphism in eye‐span closely correlated with dimorphism in wing length (r = 0.89, P < 0.001) and the correlation remained significant (r = 0.81, P = 0.006) after correcting for phylogenetic relationships. Once corrected for phylogenetic relatedness, the mass‐specific wing length of males (but not females) was weakly correlated with mass‐specific eye‐span (r = 0.66, P = 0.042). We propose that the observed proportional increase in wing length associated with increased eye‐span can facilitate aerial manoeuverability, which would otherwise be handicapped by the elevated moment of inertia imposed by the wider head. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 860–871.  相似文献   

7.
Sexual selection is generally held responsible for the exceptional diversity in secondary sexual traits in animals. Mating system evolution is therefore expected to profoundly affect the covariation between secondary sexual traits and mating success. Whereas there is such evidence at the interspecific level, data within species remain scarce. We here investigate sexual selection acting on the exaggerated male fore femur and the male wing in the common and widespread dung flies Sepsis punctum and S. neocynipsea (Diptera: Sepsidae). Both species exhibit intraspecific differences in mating systems and variation in sexual size dimorphism (SSD) across continents that correlates with the extent of male–male competition. We predicted that populations subject to increased male–male competition will experience stronger directional selection on the sexually dimorphic male foreleg. Our results suggest that fore femur size, width and shape were indeed positively associated with mating success in populations with male‐biased SSD in both species, which was not evident in conspecific populations with female‐biased SSD. However, this was also the case for wing size and shape, a trait often assumed to be primarily under natural selection. After correcting for selection on overall body size by accounting for allometric scaling, we found little evidence for independent selection on any of these size or shape traits in legs or wings, irrespective of the mating system. Sexual dimorphism and (foreleg) trait exaggeration is therefore unlikely to be driven by direct precopulatory sexual selection, but more so by selection on overall size or possibly selection on allometric scaling.  相似文献   

8.
Sexual dimorphism can evolve when males and females differ in phenotypic optima. Genetic constraints can, however, limit the evolution of sexual dimorphism. One possible constraint is derived from alleles expressed in both sexes. Because males and females share most of their genome, shared alleles with different fitness effects between sexes are faced with intralocus sexual conflict. Another potential constraint is derived from genetic correlations between developmental stages. Sexually dimorphic traits are often favoured at adult stages, but selected against as juvenile, so developmental decoupling of traits between ontogenetic stages may be necessary for the evolution of sexual dimorphism in adults. Resolving intralocus conflicts between sexes and ages is therefore a key to the evolution of age‐specific expression of sexual dimorphism. We investigated the genetic architecture of divergence in the ontogeny of sexual dimorphism between two populations of the Japanese medaka (Oryzias latipes) that differ in the magnitude of dimorphism in anal and dorsal fin length. Quantitative trait loci (QTL) mapping revealed that few QTL had consistent effects throughout ontogenetic stages and the majority of QTL change the sizes and directions of effects on fin growth rates during ontogeny. We also found that most QTL were sex‐specific, suggesting that intralocus sexual conflict is almost resolved. Our results indicate that sex‐ and age‐specific QTL enable the populations to achieve optimal developmental trajectories of sexually dimorphic traits in response to complex natural and sexual selection.  相似文献   

9.
Wing shape has been shown in a variety of species to be influenced by natural and sexual selection. In damselflies, front- and hind wings can beat independently, and functional differentiation may occur. Males of Calopteryx damselflies show species-specific nuptial flights that differ in colour signalling with the hind wings. Therefore, hind wing shape and colour may evolve in concert to improve colour display, independent of the front wings. We predicted that male hind wing shape evolves faster than front wing shape, due to sexual selection. Females do not engage in sexual displays, so we predicted that females do not show differences in divergence between front- and hind wing shape. We analysed the non-allometric component of wing shape of five European Calopteryx taxa using geometric morphometrics. We found a higher evolutionary divergence of hind wing shape in both sexes. Indeed, we found no significant differences in rate of evolution between the sexes, despite clear sex-specific differences in wing shape. We suggest that evolution of hind wing shape in males is accelerated by sexual selection on pre-copulatory displays and that this acceleration is reflected in females due to genetic correlations that somehow link the rates of wing shape evolution in the two sexes, but not the wing shapes themselves.  相似文献   

10.
This study examined sexual dimorphism of head morphology in the ecologically diverse three‐spined stickleback Gasterosteus aculeatus. Male G. aculeatus had longer heads than female G. aculeatus in all 10 anadromous, stream and lake populations examined, and head length growth rates were significantly higher in males in half of the populations sampled, indicating that differences in head size increased with body size in many populations. Despite consistently larger heads in males, there was significant variation in size‐adjusted head length among populations, suggesting that the relationship between head length and body length was flexible. Inter‐population differences in head length were correlated between sexes, thus population‐level factors influenced head length in both sexes despite the sexual dimorphism present. Head shape variation between lake and anadromous populations was greater than that between sexes. The common divergence in head shape between sexes across populations was about twice as important as the sexual dimorphism unique to each population. Finally, much of the sexual dimorphism in head length was due to divergence in the anterior region of the head, where the primary trophic structures were found. It is unclear whether the sexual dimorphism was due to natural selection for niche divergence between sexes or sexual selection. This study improves knowledge of the magnitude, growth rate divergence, inter‐population variation and location of sexual dimorphism in G. aculeatus head morphology.  相似文献   

11.
Interspecific and sex-related variations in the wing shape of 22 species of the fly subfamily Dolichopodinae, family Dolichopodidae were analyzed using geometric morphometrics. Mapping morphometric traits onto phylogeny revealed a clear phylogenetic signal in the interspecific variation and sexual dimorphism of wing shape. In some cases, not too closely related species occupied the same portion of the morphometric space, indicating some degree of homoplasy. Interspecific variation was associated with an increased wing area due to both elongation and widening or only elongation of the wing. An increase in wing area was accompanied by extension of the posterior crossvein to the apical part of the wing. The variation in wing shape related to sexual dimorphism involved the same structures (the posterior crossvein and the apical part of CuA1), but variation associated with sexual dimorphism was distributed in fewer dimensions than interspecific variation. The allometric component of sexual dimorphism varied between species, and in most cases it was not the leading factor in wing shape variability.  相似文献   

12.
Theoretical explanations of empirically observed standing genetic variation, mutation, and selection suggest that many alleles must jointly affect fitness and metric traits. However, there are few direct demonstrations of the nature and extent of these pleiotropic associations. We implemented a mutation accumulation (MA) divergence experimental design in Drosophila serrata to segregate genetic variants for fitness and metric traits. By exploiting naturally occurring MA line extinctions as a measure of line‐level total fitness, manipulating sexual selection, and measuring productivity we were able to demonstrate genetic covariance between fitness and standard metric traits, wing size, and shape. Larger size was associated with lower total fitness and male sexual fitness, but higher productivity. Multivariate wing shape traits, capturing major axes of wing shape variation among MA lines, evolved only in the absence of sexual selection, and to the greatest extent in lines that went extinct, indicating that mutations contributing wing shape variation also typically had deleterious effects on both total fitness and male sexual fitness. This pleiotropic covariance of metric traits with fitness will drive their evolution, and generate the appearance of selection on the metric traits even in the absence of a direct contribution to fitness.  相似文献   

13.
Intraspecific genetic diversity and divergence have a large influence on the adaption and evolutionary potential of species. The widely distributed starfish, Coscinasterias tenuispina, combines sexual reproduction with asexual reproduction via fission. Here we analyse the phylogeography of this starfish to reveal historical and contemporary processes driving its intraspecific genetic divergence. We further consider whether asexual reproduction is the most important method of propagation throughout the distribution range of this species. Our study included 326 individuals from 16 populations, covering most of the species’ distribution range. A total of 12 nuclear microsatellite loci and sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene were analysed. COI and microsatellites were clustered in two isolated lineages: one found along the southwestern Atlantic and the other along the northeastern Atlantic and Mediterranean Sea. This suggests the existence of two different evolutionary units. Marine barriers along the European coast would be responsible for population clustering: the Almeria–Oran Front that limits the entrance of migrants from the Atlantic to the Mediterranean, and the Siculo‐Tunisian strait that divides the two Mediterranean basins. The presence of identical genotypes was detected in all populations, although two monoclonal populations were found in two sites where annual mean temperatures and minimum values were the lowest. Our results based on microsatellite loci showed that intrapopulation genetic diversity was significantly affected by clonality whereas it had lower effect for the global phylogeography of the species, although still some impact on populations’ genetic divergence could be observed between some populations.  相似文献   

14.
Sexual dimorphism is a consequence of both sex‐specific selection and potential constraints imposed by a shared genetic architecture underlying sexually homologous traits. However, genetic architecture is expected to evolve to mitigate these constraints, allowing the sexes to approach their respective optimal mean phenotype. In addition, sex‐specific selection is expected to generate sexual dimorphism of trait covariance structure (e.g., the phenotypic covariance matrix, P ), but previous empirical work has not fully addressed this prediction. We compared patterns of phenotypic divergence, for three traits in seven taxa in the insect genus Phymata (Reduviidae), to ask whether sexual dimorphism in P is common and whether its magnitude relates to the extent of sexual dimorphism in trait means. We found that sexual dimorphism in both mean and covariance structure was pervasive but also that the multivariate distance between sex‐specific means was correlated with sex differences in the leading eigenvector of P , while accounting for uncertainty in phylogenetic relationships. Collectively, our findings suggest that sexual dimorphism in covariance structure may be a common but underappreciated feature of dioecious populations.  相似文献   

15.
The independent evolution of males and females is potentially constrained by both sexes inheriting the same alleles from their parents. This genetic constraint can limit the evolvability of complex traits; however, there are few studies of multivariate evolution that incorporate cross‐sex genetic covariances in their predictions. Drosophila wing‐shape has emerged as a model high‐dimensional phenotype; wing‐shape is highly evolvable in contemporary populations, and yet perplexingly stable across phylogenetic timescales. Here, we show that cross‐sex covariances in Drosophila melanogaster, given by the B ‐matrix, may considerably bias wing‐shape evolution. Using random skewers, we show that B would constrain the response to antagonistic selection by 90%, on average, but would double the response to concordant selection. Both cross‐sex within‐trait and cross‐sex cross‐trait covariances determined the predicted response to antagonistic selection, but only cross‐sex within‐trait covariances facilitated the predicted response to concordant selection. Similar patterns were observed in the direction of extant sexual dimorphism in D. melanogaster, and in directions of most and least dimorphic variation across the Drosophila phylogeny. Our results highlight the importance of considering between‐sex genetic covariances when making predictions about evolution on both macro‐ and microevolutionary timescales, and may provide one more explanatory piece in the puzzle of stasis.  相似文献   

16.
Six microsatellite loci were isolated and characterized to assess genetic diversity and determine parentage in three captive roseate spoonbill (Ajaia ajaja) populations. Analysis of 61 individuals from three zoological parks and one wild population at five polymorphic loci revealed an average of six alleles per locus and expected heterozygosities from 59% to 81% (average 70%). Since spoonbills do not exhibit obvious sexual dimorphism, Aaju4, which exhibited ZW‐specific alleles, was exceptionally useful for sex identification. These loci will be valuable tools for investigating genetic diversity and documenting patterns of parentage in captive roseate spoonbill populations.  相似文献   

17.
Although male ornaments may provide benefits to individuals bearing them, such structures may also entail fitness costs. Selection should favour aspects of the phenotype that act to reduce such costs, yet such compensatory traits are often ignored in studies of sexual selection. If a male ornament increases predation risk via reduced locomotor performance, then there may be selection for changes in morphological traits to compensate for behavioural or biomechanical changes in how individuals use their morphology (or both). We took a comparative approach aiming to test whether changes in wing beat frequency are evolutionarily correlated with increases in male ornamentation across stalk‐eyed fly species. Previous studies have shown that increased male eye span is evolutionarily correlated with increased wing size; thus, we tested whether there is additional compensation via increases in size‐adjusted wing beat frequency. The results obtained revealed that relative wing beat frequency is negatively related to relative eye span in males, and sexual dimorphism in wing beat frequency is negatively related to dimorphism in eye span. These findings, in addition to our finding that eye span dimorphism is positively related to aspect ratio dimorphism, suggest that male stalk‐eyed flies compensate primarily by increasing wing size and shape, which may then have resulted in the subsequent evolutionary reduction in wing beat frequency. Thus, exaggerated ornaments can result in evolutionary modifications in wing morphology, which in turn lead to adjustments in flapping kinematics, illustrating the tight envelope of trade‐offs when compensating for exaggerated ornaments. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 670–679.  相似文献   

18.
Melanosuchus niger is a caimanine alligatorid widely distributed in the northern region of South America. This species has been the focus of several ecological, genetic and morphological studies. However, morphological studies have generally been limited to examination of interspecific variation among extant species of South American crocodylians. Here, we present the first study of intraspecific variation in the skull of M. niger using a two‐dimensional geometric morphometric approach. The crania of 52 sexed individuals varying in size were analysed to quantify shape variation and to assign observed shape changes to different types of intraspecific variation, that is, ontogenetic variation and sexual dimorphism. Most of the variation in this species is ontogenetic variation in snout length, skull depth, orbit size and the width of the postorbital region. These changes are correlated with bite force performance and probably dietary changes. However, a comparison with previous functional studies reveals that functional adaptations during ontogeny seem to be primarily restricted to the postrostral region, whereas rostral shape changes are more related to dietary shifts. Furthermore, the skulls of M. niger exhibit a sexual dimorphism, which is primarily size‐related. The presence of non‐size‐related sexual dimorphism has to be tested in future examinations.  相似文献   

19.
Under natural selection, wing shape is expected to evolve to optimize flight performance. However, other selective factors besides flight performance may influence wing shape. One such factor could be sexual selection in wing sexual ornaments, which may lead to alternative variations in wing shape that are not necessarily related to flight performance. In the present study, we investigated wing shape variations in a calopterygid damselfly along a latitudinal gradient using geometric morphometrics. Both sexes show wing pigmentation, which is a known signal trait at intra‐ and interspecific levels. Wing shape differed between sexes and, within the same sex, the shape of the hind wing differed from the front wing. Latitude and body size explained a high percentage of the variation in wing shape for female front and hind wings, and male front wings. In male hind wings, wing pigmentation explained a high amount of the variation in wing shape. On the other hand, the variation in shape explained by pigmentation was very low in females. We suggest that the conservative morphology of front wings is maintained by natural selection operating on flight performance, whereas the sex‐specific differences in hind wings most likely could be explained by sexual selection. The observed sexual dimorphism in wing shape is likely a result of different sex‐specific behaviours. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 263–274.  相似文献   

20.
Sexual dimorphism of phenotypic traits associated with resource use is common in animals, and may result from niche divergence between sexes. Snakes have become widely used in studies of the ecological basis of sexual dimorphism because they are gape‐limited predators and their head morphology is likely to be a direct indicator of the size and shape of prey consumed. We examined sexual dimorphism of body size and head morphology, as well as sexual differences in diet, in a population of Mexican lance‐headed rattlesnakes, Crotalus polystictus, from the State of México, Mexico. The maximum snout–vent length of males was greater than that of females by 21%. Males had relatively larger heads, and differed from females in head shape after removing the effects of head size. In addition, male rattlesnakes showed positive allometry in head shape: head width was amplified, whereas snout length was truncated with increased head size. By contrast, our data did not provide clear evidence of allometry in head shape of females. Adults of both males and females ate predominately mice and voles; however, males also consumed a greater proportion of larger mammalian species, and fewer small prey species. The differences in diet correspond with dimorphism in head morphology, and provide evidence of intersexual niche divergence in the study population. However, because the sexes overlapped greatly in diet, we hypothesize that diet and head dimorphisms in C. polystictus are likely related to different selection pressures in each sex arising from pre‐existing body size differences rather than from character displacement for reducing intersexual competition. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 633–640.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号