首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the biological clock (sympathetic pre-autonomic neurons) or from non-clock areas (para-sympathetic pre-autonomic neurons), but the timing information is mainly provided by the GABAergic outputs of the biological clock.  相似文献   

2.
Every day, we experience profound changes in our mental and physical condition as body and brain alternate between states of high activity during the waking day and rest during night-time sleep. The fundamental evolutionary adaptation to these profound daily changes in our physiological state is an endogenous 24-h clock. This biological clock enables us to prepare ourselves to these daily changes, instead of only being able to show a passive and delayed response. During the past decade, enormous progress has been made in determining possible molecular components of the biological clock. An important question remains, however, regarding how the rhythmic signal from the biological clock is spread throughout the body to control its physiology and behavior. Indeed, ultimately, the only raison d'etre for the biological clock is its output (Green 1998). In the present review, we propose that the main mechanism for the spreading time-of-day information throughout the body consists of different circadian waves of suprachiasmatic nucleus (SCN) transmitter release, directed to a restricted number of specific SCN target areas, and affecting both neuroendocrine mechanisms and the peripheral autonomic nervous system.  相似文献   

3.
Portolés S  Más P 《PLoS genetics》2010,6(11):e1001201
Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups. CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2 regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP and Double-ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1). CK2 activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and temperature-dependent activities (CCA1-CK2) are essential for clock temperature compensation in Arabidopsis.  相似文献   

4.

Background

Many physiological processes in our body are controlled by the biological clock and show circadian rhythmicity. It is generally accepted that a robust rhythm is a prerequisite for optimal functioning and that a lack of rhythmicity can contribute to the pathogenesis of various diseases. Here, we tested in a heterogeneous laboratory zebrafish population whether and how variation in the rhythmicity of the biological clock is associated with the coping styles of individual animals, as assessed in a behavioural assay to reliably measure this along a continuum between proactive and reactive extremes.

Results

Using RNA sequencing on brain samples, we demonstrated a prominent difference in the expression level of genes involved in the biological clock between proactive and reactive individuals. Subsequently, we tested whether this correlation between gene expression and coping style was due to a consistent change in the level of clock gene expression or to a phase shift or to altered amplitude of the circadian rhythm of gene expression. Our data show a remarkable individual variation in amplitude of the clock gene expression rhythms, which was also reflected in the fluctuating concentrations of melatonin and cortisol, and locomotor activity. This variation in rhythmicity showed a strong correlation with the coping style of the individual, ranging from robust rhythms with large amplitudes in proactive fish to a complete absence of rhythmicity in reactive fish. The rhythmicity of the proactive fish decreased when challenged with constant light conditions whereas the rhythmicity of reactive individuals was not altered.

Conclusion

These results shed new light on the role of the biological clock by demonstrating that large variation in circadian rhythmicity of individuals may occur within populations. The observed correlation between coping style and circadian rhythmicity suggests that the level of rhythmicity forms an integral part of proactive or reactive coping styles.
  相似文献   

5.

Background

The biological clock, located in the hypothalamic suprachiasmatic nucleus (SCN), controls the daily rhythms in physiology and behavior. Early studies demonstrated that light exposure not only affects the phase of the SCN but also the functional activity of peripheral organs. More recently it was shown that the same light stimulus induces immediate changes in clock gene expression in the pineal and adrenal, suggesting a role of peripheral clocks in the organ-specific output. In the present study, we further investigated the immediate effect of nocturnal light exposure on clock genes and metabolism-related genes in different organs of the rat. In addition, we investigated the role of the autonomic nervous system as a possible output pathway of the SCN to modify the activity of the liver after light exposure.

Methodology and Principal Findings

First, we demonstrated that light, applied at different circadian times, affects clock gene expression in a different manner, depending on the time of day and the organ. However, the changes in clock gene expression did not correlate in a consistent manner with those of the output genes (i.e., genes involved in the functional output of an organ). Then, by selectively removing the autonomic innervation to the liver, we demonstrated that light affects liver gene expression not only via the hormonal pathway but also via the autonomic input.

Conclusion

Nocturnal light immediately affects peripheral clock gene expression but without a clear correlation with organ-specific output genes, raising the question whether the peripheral clock plays a “decisive” role in the immediate (functional) response of an organ to nocturnal light exposure. Interestingly, the autonomic innervation of the liver is essential to transmit the light information from the SCN, indicating that the autonomic nervous system is an important gateway for the SCN to cause an immediate resetting of peripheral physiology after phase-shift inducing light exposures.  相似文献   

6.
7.
The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each dependent on the cell‐autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock that produces a coherent output capable of timing all the different daily changes in behavior and physiology. We investigated which anatomical connections and neurotransmitters are used by the biological clock to control the daily release pattern of a number of hormones. The picture that emerged shows projections contacting target neurons in the medial hypothalamus surrounding the SCN. The activity of these pre‐autonomic and neuro‐endocrine target neurons is controlled by differentially timed waves of vasopressin, GABA, and glutamate release from SCN terminals, among other factors. Together our data indicate that, with regard to the timing of their main release period within the LD cycle, at least four subpopulations of SCN neurons should be discernible. The different subgroups do not necessarily follow the phenotypic differences among SCN neurons. Thus, different subgroups can be found within neuron populations containing the same neurotransmitter. Remarkably, a similar distinction of four differentially timed subpopulations of SCN neurons was recently also discovered in experiments determining the temporal patterns of rhythmicity in individual SCN neurons by way of the electrophysiology or clock gene expression. Moreover, the specialization of the SCN may go as far as a single body structure, i.e., the SCN seems to contain neurons that specifically target the liver, pineal gland, and adrenal gland.  相似文献   

8.
9.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal component of the mammalian biological clock, the neural timing system that generates and coordinates a broad spectrum of physiological, endocrine and behavioural circadian rhythms. The pacemaker of the SCN oscillates with a near 24 h period and is entrained to the diurnal light-dark cycle. Consistent with its role in circadian timing, investigations in rodents and non-human primates furthermore suggest that the SCN is the locus of the brain's endogenous calendar, enabling organisms to anticipate seasonal environmental changes. The present review focuses on the neuronal organization and dynamic properties of the biological clock and the means by which it is synchronized with the environmental lighting conditions. It is shown that the functional activity of the biological clock is entrained to the seasonal photic cycle and that photoperiod (day length) may act as an effective zeitgeber. Furthermore, new insights are presented, based on electrophysiological and molecular studies, that the mammalian circadian timing system consists of coupled oscillators and that the clock genes of these oscillators may also function as calendar genes. In summary, there are now strong indications that the neuronal changes and adaptations in mammals that occur in response to a seasonally changing environment are driven by an endogenous circadian clock located in the SCN, and that this neural calendar is reset by the seasonal fluctuations in photoperiod.  相似文献   

10.
In the fruit fly Drosophila melanogaster, social interactions especially among heterosexual couples have been shown to have significant impact on the circadian timing system. Olfaction plays a major role in such interactions; however, we do not know yet specifically which receptor(s) are involved. Further, the role of circadian clock neurons in the rhythmic regulation of such sociosexual interactions (SSIs) is not fully understood. Here, we report the results of our study in which we assayed the locomotor activity and sleep-wake behaviors of male-male (MM), female-female (FF), and male-female (MF) couples from several wild-type and mutant strains of Drosophila with an aim to identify specific olfactory receptor(s) and circadian clock neurons involved in the rhythmic regulation of SSI. The results indicate that Or47b receptor neurons are necessary for SSI, as ablation or silencing of these neurons has a severe impact on SSI. Further, the neuropeptide pigment dispersing factor (PDF) and PDF-positive ventral lateral (LN(v)) clock neurons appear to be dispensable for the regulation of SSI; however, dorsal neurons may be involved.  相似文献   

11.
Nowadays humans mainly rely on external, unnatural clocks such as of cell phones and alarm clocks--driven by circuit boards and electricity. Nevertheless, our body is under the control of another timer firmly anchored in our genes. This evolutionary very old biological clock drives most of our physiology and behavior. The genes that control our internal clock are conserved among most living beings. One organism that shares this ancient clock mechanism with us humans is the fruitfly Drosophila melanogaster. Since it turned out that Drosophila is an excellent model, it is no surprise that its clock is very well and intensely investigated. In the following review we want to display an overview of the current understanding of Drosophila's circadian clock.  相似文献   

12.
Social jetlag and obesity   总被引:1,自引:0,他引:1  
Obesity has reached crisis proportions in industrialized societies. Many factors converge to yield increased body mass index (BMI). Among these is sleep duration. The circadian clock controls sleep timing through the process of entrainment. Chronotype describes individual differences in sleep timing, and it is determined by genetic background, age, sex, and environment (e.g., light exposure). Social jetlag quantifies the discrepancy that often arises between circadian and social clocks, which results in chronic sleep loss. The circadian clock also regulates energy homeostasis, and its disruption-as with social jetlag-may contribute to weight-related pathologies. Here, we report the results from a large-scale epidemiological study, showing that, beyond sleep duration, social jetlag is associated with increased BMI. Our results demonstrate that living "against the clock" may be a factor contributing to the epidemic of obesity. This is of key importance in pending discussions on the implementation of Daylight Saving Time and on work or school times, which all contribute to the amount of social jetlag accrued by an individual. Our data suggest that improving the correspondence between biological and social clocks will contribute to the management of obesity.  相似文献   

13.
14.
Robust biological rhythms have been shown to affect life span. Biological clocks can be entrained by two feeding regimens, restricted feeding (RF) and caloric restriction (CR). RF restricts the time of food availability, whereas CR restricts the amount of calories with temporal food consumption. CR is known to retard aging and extend life span of animals via yet-unknown pathways. We hypothesize that resetting the biological clock could be one possible mechanism by which CR extends life span. Because it is experimentally difficult to uncouple calorie reduction from temporal food consumption, we took advantage of the murine urokinase-like plasminogen activator (alphaMUPA) transgenic mice overexpressing a serine protease implicated in brain development and plasticity; they exhibit spontaneously reduced eating and increased life span. Quantitative real-time PCR analysis revealed that alphaMUPA mice exhibit robust expression of the clock genes mPer1, mPer2, mClock, and mCry1 but not mBmal1 in the liver. We also found changes in the circadian amplitude and/or phase of clock-controlled output systems, such as feeding behavior, body temperature, and enteric cryptdin expression. A change in the light-dark regimen led to modified clock gene expression and abrogated circadian patterns of food intake in wild-type (WT) and alphaMUPA mice. Consequently, food consumption of WT mice increased, whereas that of alphaMUPA mice remained the same, indicating that reduced food intake occurs upstream and independently of the biological clock. Thus we surmise that CR could lead to pronounced and synchronized biological rhythms. Because the biological clock controls mitochondrial, hormonal, and physiological parameters, system synchronicity could lead to extended life span.  相似文献   

15.
In mammals many behaviours (e.g. sleep-wake, feeding) as well as physiological (e.g. body temperature, blood pressure) and endocrine (e.g. plasma corticosterone concentration) events display a 24 h rhythmicity. These 24 h rhythms are induced by a timing system that is composed of central and peripheral clocks. The highly co-ordinated output of the hypothalamic biological clock not only controls the daily rhythm in sleep-wake (or feeding-fasting) behaviour, but also exerts a direct control over many aspects of hormone release and energy metabolism. First, we present the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, especially the neuro-endocrine and energy homoeostatic systems. Subsequently, we review a number of physiological experiments investigating the functional significance of this neuro-anatomical substrate. Together, this overview of experimental data reveals a highly specialized organization of connections between the hypothalamic pacemaker and neuro-endocrine system as well as the pre-sympathetic and pre-parasympathetic branches of the autonomic nervous system.  相似文献   

16.
17.
Chemical modulators are powerful tools to investigate biological processes. To identify circadian clock effectors, we screened a natural product library in the model plant Arabidopsis thaliana. Two compounds, prieurianin (Pri) and prieurianin acetate, were identified as causing a shorter circadian period. Recently, Pri was independently identified as a vesicle trafficking inhibitor and re-named endosidin 1 (ES1). Here we show that Pri primarily affects actin filament flexibility in vivo, later resulting in reduced severing and filament depolymerization. This stabilization of the actin cytoskeleton subsequently causes changes in vesicle trafficking. Pri also affected microfilaments in mammalian cells, indicating that its target is highly conserved; however, it did not alter actin dynamics in vitro, suggesting that its activity requires the presence of actin-associated proteins. Furthermore, well-characterized actin inhibitors shortened the period length of the Arabidopsis clock in a similar way to Pri, supporting the idea that Pri affects rhythms by altering the actin network. We conclude that actin-associated processes influence the circadian system in a light-dependent manner, but their disruption does not abolish rhythmicity. In summary, we propose that the primary effect of Pri is to stabilize the actin cytoskeleton system, thereby affecting endosome trafficking. Pri appears to stabilize actin filaments by a different mechanism from previously described inhibitors, and will be a useful tool to study actin-related cellular processes.  相似文献   

18.
Coordinated daily rhythms are evident in most aspects of our physiology, driven by internal timing systems known as circadian clocks. Our understanding of how biological clocks are built and function has grown exponentially over the past 20 years. With this has come an appreciation that disruption of the clock contributes to the pathophysiology of numerous diseases, from metabolic disease to neurological disorders to cancer. However, it remains to be determined whether it is the disruption of our rhythmic physiology per se (loss of timing itself), or altered functioning of individual clock components that drive pathology. Here, we review the importance of circadian rhythms in terms of how we (and other organisms) relate to the external environment, but also in relation to how internal physiological processes are coordinated and synchronized. These issues are of increasing importance as many aspects of modern life put us in conflict with our internal clockwork.
  相似文献   

19.
Winding up the cyanobacterial circadian clock   总被引:1,自引:0,他引:1  
The endogenous circadian clock of the cyanobacterium Synechococcus elongatus controls many cellular processes and confers an adaptive advantage on this organism in a competitive environment. To be advantageous, this internal biological oscillator must be reset daily to remain in synchrony with its environment and to transduce temporal information to control behaviors at appropriate times of day. Recent studies have discovered new components of these input and output pathways of the clock that help to 'wind up' our understanding of the clock system as a whole. Here we review the mechanisms by which S. elongatus maintains internal time, discuss how external stimuli affect this oscillation, and evaluate the mechanisms underlying circadian controlled cellular events.  相似文献   

20.
Thrombomodulin is a clock-controlled gene in vascular endothelial cells   总被引:1,自引:0,他引:1  
Cardiovascular diseases are closely related to circadian rhythm, which is under the control of an internal biological clock mechanism. Although a biological clock exists not only in the hypothalamus but also in each peripheral tissue, the biological relevance of the peripheral clock remains to be elucidated. In this study we searched for clock-controlled genes in vascular endothelial cells using microarray technology. The expression of a total of 229 genes was up-regulated by CLOCK/BMAL2. Among the genes that we identified, we examined the thrombomodulin (TM) gene further, because TM is an integral membrane glycoprotein that is expressed primarily in vascular endothelial cells and plays a major role in the regulation of intravascular coagulation. TM mRNA and protein expression showed a clear circadian oscillation in the mouse lung and heart. Reporter analyses, gel shift assays, and chromatin immunoprecipitation analyses using the TM promoter revealed that a heterodimer of CLOCK and BMAL2 binds directly to the E-box of the TM promoter, resulting in TM promoter transactivation. Indeed, the oscillation of TM gene expression was abolished in clock mutant mice, suggesting that TM expression is regulated by the clock gene in vivo. Finally, the phase of circadian oscillation of TM mRNA expression was altered by temporal feeding restriction, suggesting TM gene expression is regulated by the peripheral clock system. In conclusion, these data suggest that the peripheral clock in vascular endothelial cells regulates TM gene expression and that the oscillation of TM expression may contribute to the circadian variation of cardiovascular events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号