首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In microinjected Myxicola giant axons with elevated [Na]i, Na efflux was sensitive to Cao under some conditions. In Li seawater, sensitivity to Cao was high whereas in Na seawater, sensitivity to Cao was observed only upon elevation of [Ca]o above the normal value. In choline seawater, the sensitivity of Na efflux to Cao was less than that observed in Li seawater whereas Mg seawater failed to support any detectable Cao-sensitive Na efflux. Addition of Na to Li seawater was inhibitory to Cao-sensitive Na efflux, the extent of inhibition increasing with rising values of [Na]o. The presence of 20 mM K in Li seawater resulted in about a threefold increase in the Cao-activated Na efflux. Experiments in which the membrane potential, Vm, was varied or held constant when [K]o was changed showed that the augmentation of Ca- activated Na efflux by Ko was not due to changes in Vm but resulted from a direct action of K on activation by Ca. The same experimental conditions that favored a large component of Cao-activated Na efflux also caused a large increase in Ca influx. Measurements of Ca influx in the presence of 20 mM K and comparison with values of Ca-activated Na efflux suggest that the Na:Ca coupling ratio may be altered by increasing external [K]o. Overall, the results suggest that the Cao- activated Na efflux in Myxicola giant axons requires the presence of an external monovalent cation and that the order of effectiveness at a total monovalent cation concentration of 430 mM is K + Li greater than Li greater than Choline greater than Na.  相似文献   

2.
We have studied the interaction of physiological ligands other than Nai and Cai with the Ca pump and Na/Ca exchange in internally dialyzed squid axons. The results show the following. (a) Internal Mg2+ is an inhibitor of the Nao-dependent Ca efflux. At physiological Mg2+i (4 mM), the inhibition amounts to approximately 50%. The inhibition is partial and noncompetitive with Cai, and is not affected by Nai or ATP. The ATP-dependent uncoupled efflux is unaffected by Mgi up to 20 mM. Both components of the Ca efflux require Mg2+i for their activation by ATP. (b) At constant membrane potential, Ki is an important cofactor for the uncoupled Ca efflux. (c) Orthophosphate (Pi) activates the Nao-dependent Ca efflux without affecting the uncoupled component. Activation by Pi occurs only in the presence of Mg-ATP or hydrolyzable ATP analogues. Pi under physiological conditions has no effect on the uncoupled component; nevertheless, at alkaline pH, it inhibits the Ca pump, probably by product inhibition. (d) ADP is a potent inhibitor of the uncoupled Ca efflux. The Nao-dependent component is inhibited by ADP only at much higher ADP concentrations. These results indicate that (a) depending on the concentration of Ca2+i, Na+i Mg2+i, and Pi, the Na/Ca carrier can operate under a low- or high-rate regime; (b) the interactions of Mg2+i, Pi, Na+i, and ATP with the carrier are not interdependent; (c) the effect of Pi on the carrier-mediated Ca efflux resembles the stimulation of the Nao-dependent Ca efflux by internal vanadate; (d) the ligand effects on the uncoupled Ca efflux are of the type seen in the Ca pump in red cells and the sarcoplasmic reticulum.  相似文献   

3.
A mechanism for Na/Ca transport   总被引:12,自引:6,他引:6       下载免费PDF全文
  相似文献   

4.
Sodium efflux in Myxicola giant axons   总被引:1,自引:1,他引:0       下载免费PDF全文
Several properties of the Na pump in giant axons from the marine annelid Myxicola infundibulum have been determined in an attempt to characterize this preparation for membrane transport studies. Both NaO and KO activated the Na pump of normal microinjected Myxicola axons. In this preparation, the KO activation was less and the NaO activation much greater than that found in the squid giant axon. However, when the intracellular ATP:ADP ratio of the Myxicola axon was elevated by injection of an extraneous phosphagen system, the K sensitivity of Na efflux increased to the magnitude characteristic of squid axons and the activating effect of NaO disappeared. Several axons were injected with Na2SO4 in order to determine the effect of elevated Nai on the Na efflux. Increasing Nai enhanced a component of Na efflux which was insensitive to ouabain and dependent on [Ca] in Na-free (Li) seawater. After subtracting the CaO-dependent fraction, Na efflux was related linearly to [Na]i in all solutions except in K-free (Li) seawater, where it appeared to reach saturation at high [Na]i.  相似文献   

5.
The effect on Na+ efflux of removal of intracellular Mg2+ was studied in squid giant axons dialyzed without internal Ca2+. In the absence of Mg2i+, ATP was unable to stimulate any efflux of Na+ above the baseline of about 1 pmol . cm-2 . s-1. This behavior was observed in otherwise normal axons and in axons poisoned with 50 microM strophanthidin in the sea water. Reinstatement of 4 mM MgCl2 in excess to ATP in the dialysis solution brought about the usual response of Na+ efflux to ATP, external K+ and strophanthidin. The present experiments show that, regardless of the mechanism for the ATP-dependent Na+ efflux in strophanthidin-poisoned axons, this type of flux shares with the active Na+ extrusion the need for the simultaneous presence of intracellular ATP and Mg2+.  相似文献   

6.
The effect of varying Nao and Nai on Ca efflux while maintaining the ratio Nao/Nai constant was explored in squid giant axons dialyzed with and without ATP. In the absence of ATP, the Ca efflux increased 3.4 +/- 0.2-fold when the Nao/Nai concentrations were reduced from 440/80 to 110/20 mM. In the presence of ATP a similar change did not have an appreciable effect. The inhibition of Ca efflux produced by Nai was studied in the presence and in the absence of ATP. In the absence of ATP, inhibition is very marked and is reminiscent of a unimolecular noncompetitive reaction (inactivation constant [KI] of 34 +/- 5 mM of Nai) whereas in the presence of ATP, the slight inhibition observed indicates that ATP probably increases the KI to 200mM. From the inhibition of the Ca efflux produced by Nai in the presence or absence of ATP a curve describing the dependence of Nai of the ATP-promoted fraction of Ca efflux was constructed. The effect of Nao on the Ca efflux was studied as a function of [Na]i: at low Nai, an activation constant (KA) of 41 mM for Nao was obtained either in the presence of in the absence of ATP. As the intracellular Na is increased in the presence of ATP, Nai seems to have no effect on the apparent half- activation constant. However, in the absence of ATP, the KA for activation increases along a sigmoid curve reaching a value of 112 mM at 100 mM Nai. It is concluded that the Ca efflux system uses the energy of the Na electrochemical gradient. The action of Nai appears to be such that the interaction of a single Na+ is sufficient to block Ca extrusion whereas several Naps externally are necessary to activate Ca extrusion.  相似文献   

7.
The control of ionized calcium in squid axons   总被引:9,自引:6,他引:3       下载免费PDF全文
Measurements of the Ca content, [Ca](T), of freshly isolated squid axons show a value of 60 μmol/kg axoplasm. Axons in 3 mM Ca(Na) seawater show little change in Ca content over 4 h, while axons in 3 mM Ca(Na) seawater show little change in Ca content over 4 h, while axons in 10 mM Ca(Na) seawater show gains of 18 μmol/Ca/kgxh. In 10 Ca (Choline) seawater the gain is 2,400 μmol/kgxh. Using aequorin confined to a dialysis capillary in the center of an axon, one finds that [Ca](i) is in a steady state with 3 Ca (Na) seawater, and that both 10 Ca (Na) and 3 Ca (choline) seawater cause increases in [Ca](i). In 3 Ca (Na) seawater-3 Ca (choline) seawater mixtures, 180 mM [Na](0) (40 perecent Na) is as effective as 450 mM [Na](0) (100 percent Na) in maintaining a normal [Ca](1); lower [Na] causes an increase in [Ca](i). If axons are injected with the ATP-splitting enzyme apyrase, the resulting [Ca](1) is not loading with high [Ca](0) or low [Na](0) solutions. Depolarization of an axon with 100 mM K (Na) seawater leads to an increase in the steady-state level of [Ca](1) that is reversed upon returning the axon to normal seawater. Freshly isolated axons treated with either CN or FCCP to inhibit mitochondrial Ca buffering can still maintain a normal [Ca](i) in 1 Ca (Na) seawater.  相似文献   

8.
We have used dialyzed squid axons to characterize the ouabain- and bumetanide-insensitive Na efflux components and their relation to the operation of the Na/Ca exchange mechanism. In axons dialyzed with solutions containing nearly physiological concentrations of K, Na, and Mg, three components of the Na efflux can be distinguished: Cai-activated, Cao-dependent Na efflux ("reverse" Na/Ca exchange); Cai-activated, Nao-dependent Na efflux; and Cai-independent, ATP-activated, Nao-dependent Na efflux. We have studied the effects of internal alkalinization, Mgi, Cao, and the ATP analogue [gamma-thio]ATP (ATP gamma S) on the different components of the Na efflux. The results show the following: (a) internal alkalinization activates both Cao- and Nao-dependent Na efflux components provided that Cai is present; (b) Mgi inhibits both the Cai-activated, Cao- and Nao-dependent Na efflux components; (c) Cao inhibits the Nao-dependent component by competition for a common site; (d) ATP gamma S activates both Nao- and Cao-dependent Na efflux components only in the presence of Cai; and (e) ATP activates the Nai/Nao and Nai/Cao exchanges, causing a 10-fold increase in the affinity of the reverse Na/Ca exchange toward Cai. In the absence of Cai, ATP stimulates an Nao-dependent Na efflux that is not affected either by internal alkalinization or high Cao. The ATP analogue does not activate the Cai-independent Na/Na exchange system. These experiments demonstrate that the Cai-activated Na/Na exchange is a mode of operation of the Na/Ca exchange mechanism that substantially contributes to Na movement during the activation of the Na/Ca antiporter. The experimental evidence obtained on the Cai-independent Na/Na exchange component shows that this system is not part of the Na/Ca exchange.  相似文献   

9.
The stoichiometry and voltage dependence of the Na/K pump were studied in internally dialyzed, voltage-clamped squid giant axons by simultaneously measuring, at various membrane potentials, the changes in Na efflux (delta phi Na) and holding current (delta I) induced by dihydrodigitoxigenin (H2DTG). H2DTG stops the Na/K pump without directly affecting other current pathways: (a) it causes no delta I when the pump lacks Na, K, Mg, or ATP, and (b) ouabain causes no delta I or delta phi Na in the presence of saturating H2DTG. External K (Ko) activates Na efflux with Michaelis-Menten kinetics (Km = 0.45 +/- 0.06 mM [SEM]) in Na-free seawater (SW), but with sigmoid kinetics in approximately 400 mM Na SW (Hill coefficient = 1.53 +/- 0.08, K1/2 = 3.92 +/- 0.29 mM). H2DTG inhibits less strongly (Ki = 6.1 +/- 0.3 microM) in 1 or 10 mM K Na-free SW than in 10 mM K, 390 mM Na SW (1.8 +/- 0.2 microM). Dialysis with 5 mM each ATP, phosphoenolpyruvate, and phosphoarginine reduced Na/Na exchange to at most 2% of the H2DTG-sensitive Na efflux. H2DTG sensitive but nonpump current caused by periaxonal K accumulation upon stopping the pump, was minimized by the K channel blockers 3,4-diaminopyridine (1 mM), tetraethylammonium (approximately 200 mM), and phenylpropyltriethylammonium (20-25 mM) whose adequacy was tested by varying [K]o (0-10 mM) with H2DTG present. Two ancillary clamp circuits suppressed stray current from the axon ends. Current and flux measured from the center pool derive from the same membrane area since, over the voltage range -60 to +20 mV, tetrodotoxin-sensitive current and Na efflux into Na-free SW, under K-free conditions, were equal. The stoichiometry and voltage dependence of pump Na/K exchange were examined at near-saturating [ATP], [K]o and [Na]i in both Na-free and 390 mM Na SW. The H2DTG-sensitive F delta phi Na/delta I ratio (F is Faraday's constant) of paired measurements corrected for membrane area match, was 2.86 +/- 0.09 (n = 8) at 0 mV and 3.05 +/- 0.13 (n = 6) at -60 to -90 mV in Na-free SW, and 2.72 +/- 0.09 (n = 7) at 0 mV and 2.91 +/- 0.21 (n = 4) at -60 mV in 390 mM Na SW. Its overall mean value was 2.87 +/- 0.07 (n = 25), which was not significantly different from the 3.0 expected of a 3 Na/2 K pump.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The effects of manganese chloride were studied on Na-Ca exchange fluxes from intact squid axons. Ca uptakes and Cao-dependent sodium efflux were inhibited half-maximally by 3-7 mM MnCl2. Mn inhibition appears less during Nao-Cai exchange (half-maximal inhibition; 30 mM) than that during Cao-Nai exchange, even when both fluxes were activated with 100 mM Na. The effects of changes in [Ca2+i], effected by Ca-EGTA injection or inhibition of mitochondrial Ca uptake by ruthenium red, were examined on the reverse (Cao-Nai) exchange mode. Ca-EGTA mixtures, designed to raise [Ca2+i] above 2 microM, inhibited Cao-Nai exchange fluxes. Ruthenium red inhibited mitochondrial Ca buffering to effect increases in Cai in the absence of Ca chelators; it activated Nao-Cai exchange fluxes but had little effect on Cao-Nai exchange despite similar reported Km for Cai. The results reflect the difficulty in demonstrating the stimulatory effect of [Ca2+i] on Cao-Nai exchange fluxes in intact axons.  相似文献   

11.
Summary The influx of magnesium from seawater into squid giant axons has been measured under conditions where internal solute control in the axon was maintained by dialysis. Mg influx is smallest (1 pmol/cm2 sec) when both Na and ATP have been removed from the axoplasm by dialysis. The addition of 3mm ATP to the dialysis fluid gives a Mg influx of 2.5 pmol/cm2 sec while the addition of [Na] i and [ATP] i gives 3 pmol/cm2 sec as a value for Mg influx; this corresponds well with fluxes measured in intact squid giant axons.The Mg content of squid axons is 6 mmol/kg axoplasm; this is unaffected by soaking axons in Li or Na seawater for periods of up to 100 min.  相似文献   

12.
Calcium-45 efflux was measured in squid axons whose internal solute concentration was controlled by internal dialysis. Most of the Ca efflux requires either external Na (Na-Ca exchange) or external Ca plus in alkali metal ion (Ca-Ca exchange; cf. Blaustein & Russell, 1975). Both Na-Ca and Ca-Ca exchange are apparently mediated by a single mechanism because both are inhibited by Sr and Mn, and because addition of Na to an external medium optimal for Ca-Ca exchange inhibits Ca efflux. The transport involves simultaneous (as opposed to sequential) ion counterflow because the fractional saturation by internal Ca (Cai) does not affect the external Na (Nao) activation kinetics; also, Nao promotes Ca efflux whether or not an alkali metal ion is present inside, whereas Ca-Ca exchange requires alkali metal ions both internally and externally (i.e., internal and external sites must be appropriately loaded simultaneously). ATP increases the affinity of the transport mechanism for both Cai and Nao, but it does not affect the maximal transport rate at saturating [Ca2+]i and [Na+]o; this suggest that ATP may be acting as a catalyst of modulator, and not as an energy source. Hill plots of the Nao activation data yield slopes congruent to 3 for both ATP-depleted and ATP-fueled axons, compatible with a 3 Na+-for-1 Ca2+ exchange. With this stoichiometry, the Na electrochemical gradient alone could provide sufficient energy to maintain ionized [Ca2+]i in the physiological range (about 10(-7) M).  相似文献   

13.
The ion transport system responsible for intracellular pH (pHi) regulation in squid giant axons was examined in experiments with pH- sensitive microelectrodes and isotopic fluxes of Na+ and Cl-. In one study, axons were acid-loaded and the rate of the subsequent pHi recovery was used to calculate the acid extrusion rate. There was an absolute dependence of acid extrusion on external Na+, external HCO-3 (at constant pH), and internal Cl-. Furthermore, the dependence of the acid extrusion rate on each of these three parameters was described by Michaelis-Menten kinetics. Acid extrusion was stimulated by an acid pHi, required internal ATP, and was blocked by external 4-acetamido-4'- isothiocyanostilbene-2,2'-disulfonate (SITS). Under a standard set of conditions (i.e., [HCO-3]o = 12 mM, pHo = 8.00, [Na+]o = 425 mM, [Cl-]i = 150 mM, [ATP]i = 4 mM, pHi = 6.5, and 16 degrees C), the mean acid extrusion rate was 7.5 pmol X cm-2 X s-1. In a second study under the above standard conditions, the unidirectional Na+ efflux (measured with 22Na) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean influx was about 3.4 pmol X cm-2 X s- 1. This net influx required external HCO-3, internal Cl-, and acid pHi, internal ATP, and was blocked by SITS. In the final series of experiments under the above standard conditions, the unidirectional Cl- influx (measured with 36Cl) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean efflux was approximately 3.9 pmol X cm-2 X s-1. This net efflux required external HCO-3, external Na+, an acid pHi, internal ATP, and was blocked by SITS. We conclude that the pHi-regulating system mediates the obligate net influx of HCO-3 (or equivalent species) and Na+ and the net efflux of Cl- in the stoichiometry of 2:1:1. The transport system is stimulated by intracellular acid loads, requires ATP, and is blocked by SITS.  相似文献   

14.
The effect of external and internal K+ on Na+o-dependent Ca2+ efflux was studied in dialyzed squid axons under constant membrane potential. With axons clamped at their resting potentials, external K+ (up to 70 mM) has no effect on Na+-Ca2+ exchange. Removal of Ki+ causes a marked inhibition in the Na+o-dependent Ca2+ efflux component. Internal K+ activates the Na+-Ca2+ exchange with low affinity (K 1/2 = 90 mM). Activation by Ki+ is similar in the presence or in the absence of Na+i, thus ruling out a displacement of Na+i from its inhibitory site. Axons dialyzed with ATP also show a dependency of Ca2+ efflux on Ki+. The present results demonstrate that Ki+ is an important cofactor (partially required) for the proper functioning of the forward Na+-Ca2+ exchange.  相似文献   

15.
The Na+/Ca2+ exchanger of squid axons, barnacle muscle and sarcolemma requires micromolar intracellular calcium for activation in the Na+i/Ca2+o exchange mode ('reverse' Na+/Ca2+ exchange). The requirement for [Ca2+]i has been demonstrated with the use of intracellular calcium buffers, such as Quin-2, to inhibit Na+i/Ca2+o exchange. However, the inhibition of Na+i/Ca2+o exchange in mammalian nerve terminals loaded with Quin-2 has not been observed [7], suggesting a lower sensitivity to low [Ca2+]i for this system. In contrast, the results reported herein indicate that 45Ca2+ uptake in synaptosomes through Na+i/Ca2+o exchange is inhibited by Quin-2 much in the same way as it is in the squid, provided that synaptosomes are preincubated in low Ca2+ medium to avoid saturation of Quin-2. Under these conditions, 45Ca2+ efflux via Ca2+i/Ca2+o exchange is also inhibited. Our results indicate that the Na+i/Ca2+o and Ca2+i/Ca2+o modes of the Na+/Ca2+ exchanger from rat brain synaptosomes require intracellular calcium for activation. However, because no clear relationship between the observed [Ca2+]i values and the inhibition of Na+i/Ca2+o exchange has been found, it is suggested that localised submembrane calcium concentrations not detected by the [Ca2+]i probe might regulate the exchanger.  相似文献   

16.
Calcium and EDTA fluxes in dialyzed squid axons   总被引:9,自引:9,他引:0       下载免费PDF全文
Ca efflux in dialyzed squid axons was measured with 45Ca as a function of internal ionized Ca in the range 0.005-10 muM. Internal Ca stores were depleted by treatment with CN and dialysis with media free of high energy compounds. The [Ca]iota was stabilized with millimolar concentrations of EDTA, EGTA, or DTPA. Nonspecific leak of chelated Ca was measured with [14C]-EDTA and found to be 0.02 pmol/cm2s/mM EDTA. Correction of the measured Ca efflux for this leak of chelated calcium was made when appropriate. Ca efflux was roughly linear with internal free Ca in the range 0.005-0.1 muM. Above 0.1 muM, efflux was less than proportional to concentration but did not saturate at the highest concentration studied. Ca efflux was reduced about 50% by replacement of external Na with Li at Caiota approximately 1 muM, but was insensitive to such replacement for Ca less than 0.1 muM. Ca efflux was insensitive to internal Mg in the range 0-4 mM, indicating that the Ca pump favors Ca over Mg by a factor of about 10(6). Ca efflux was reduced about 60% by increasing internal Na from 1 to 80 mM. This effect could represent weak interference of a Ca carrier by Na or a loss of driving force because of a reduction in ENa - Em occasioned by an increase in Naiota. A few measurements were made of Ca influx in intact and in dialyzed fibers. In both cases, Ca influx increased when external Na was replaced by Li.  相似文献   

17.
The free magnesium concentration in the axoplasm of the giant axon of the squid, Loligo pealei, was estimated by exploting the known sensitivity of the sodium pump to intracellular Mg2+ levels. The Mg- citrate buffer which, when injected into the axon, resulted in no change in sodium efflux was in equilibrium with a Mg2+ level of about 3- -4 mM. Optimal [Mg2+] for the sodium pump is somewhat higher. Total magnesium content of axoplasm was 6.7 mmol/kg, and that of hemolymph was 44 mM. The rate coefficient for 28Mg efflux was about 2 X 10(-3) min-u for a 500-mum axon at 22-25degreesC, with a very high temperature coefficient (Q10=4-5). This efflux is inhibited 95% by injection of apyrase and 75% by removal of external sodium, and seems unaffected by membrane potential or potassium ions. Increased intracellular ADP levels do not affect Mg efflux nor its requirement for Na+/o, but extracellularl magnesium ions do. Activation of 28Mg efflux by Na+/o follows hyperbolic kinetics, with Mg2+/o reducing the affinity of the system for Na+/o. Lanthanum and D600 reversibly inhibit Mg efflux. In the absence of both Na+ and Mg2+, but not in their presence, removal of Ca2+ from the seawater vastly increased 28Mg efflux; this efflux was also strongly inhibited by lanthanum. A small (10(-14) mol cm-2) extra Mg efflux accompanies the conduction of an action potential.  相似文献   

18.
The "late" Ca channel in squid axons   总被引:6,自引:3,他引:3       下载免费PDF全文
Squid giant axons were injected with aequorin and then treated with seawater containing 50 mM Ca and 100-465 mM K+. Measurements of light production suggested a phasic entry of Ca as well as an enhanced steady-state aequorin glow. After a test K+ depolarization, the aequorin-injected axon was stimulated for 30 min in Li seawater that was Ca-free, a procedure known to reduce [Na]i to about one-half the normal concentration. Reapplication of the elevated K+ test solution now showed that the Ca entry was virtually abolished by this stimulation in Li. A subsequent stimulation of the axon in Na seawater for 30 min resulted in recovery of the response to depolarization by high K+ noted in a normal fresh axon. In axons first tested for a high K+ response and then stimulated in Na seawater for 30 min (where [Na]i increases approximately 30%), there was approximately eight fold enhancement in this response to a test polarization. Axons depolarized with 465 mM K seawater in the absence of external Ca for several minutes were still capable of producing a large phasic entry of Ca when [Ca]0 was made 50 mM, which suggests that it is Ca entry itself rather than membrane depolarization that produced inactivation. Responses to stimulation at 60 pulses/s in Na seawater containing 50 mM Ca are at best only 5% of those measured with high K solutions. The response to repetitive stimulation is not measurable if [Ca]o is made 1 mM, whereas the response to steady depolarization is scarcely affected.  相似文献   

19.
Calcium influx in internally dialyzed squid giant axons   总被引:9,自引:4,他引:5       下载免费PDF全文
A method has been developed to measure Ca influx in internally dialyzed squid axons. This was achieved by controlling the dialyzed segment of the axon exposed to the external radioactive medium. The capacity of EGTA to buffer all the Ca entering the fiber was explored by changing the free EGTA at constant [Ca++]i. At a free [EGTA]i greater than 200 microM, the measured resting Ca influx and the expected increment in Ca entry during electrical stimulation were independent of the axoplasmic free [EGTA]. To avoid Ca uptake by the mitochondrial system, cyanide, oligomycin, and FCCP were included in the perfusate. Axons dialyzed with a standard medium containing: [ATP] = 2 mM, [Ca++]i = 0.06 microM, [Ca++]o = 10 mM, [Na+]i = 70 mM, and [Na+]o = 465 mM, gave a mean Ca influx of 0.14 +/- 0.012 pmol.cm-2.s-1 (n = 12. Removal of ATP drops the Ca influx to 0.085 +/- 0.007 pmol.cm-2.s-1 (n = 12). Ca influx increased to 0.35 pmol.cm-2,s-1 when Nao was removed. The increment was completely abolished by removing Nai+ and (or) ATP from the dialysis medium. At nominal zero [Ca++]i, no Nai-dependent Ca influx was observed. In the presence of ATP and Nai [Ca++]i activates the Ca influx along a sigmoid curve without saturation up to 1 microM [Ca++]i. Removal of Nai+ always reduced the Ca influx to a value similar to that observed in the absence of [Ca++]i (0.087 +/- 0.008 pmol.cm-2.s-1; n = 11). Under the above standard conditions, 50-60% of the total Ca influx was found to be insensitive to Nai+, Cai++, and ATP, sensitive to membrane potential, and partially inhibited by external Co++.  相似文献   

20.
Squid giant axons were injected with aequorin and tetraethylammonium and were impaled with hydrogen ion sensitive, current and voltage electrodes. A newly designed horizontal microinjector was used to introduce the aequorin. It also served, simultaneously, as the current and voltage electrode for voltage clamping and as the reference for ion-sensitive microelectrode measurements. The axons were usually bathed in a solution containing 150 mM each of Na+, K+, and some inert cation, at either physiological or zero bath Ca2+ concentration [( Ca2+]o), and had ionic currents pharmacologically blocked. Voltage clamp pulses were repeatedly delivered to the extent necessary to induce a change in the aequorin light emission, a measure of axoplasmic ionized Ca2+ level, [( Ca2+]i). Alternatively, membrane potential was steadily held at values that represented deviations from the resting membrane potential observed at 150 mM [K+]o (i.e. approximately -15 mV). In the absence of [Ca2+]o a significant steady depolarization brought about by current flow increased [Ca2+]i (and acidified the axoplasm). Changes in internal hydrogen activity, [H+]i, induced by current flow from the internal Pt wire limited the extent to which valid measurements of [Ca2+]i could be made. However, there are effects on [Ca2+]i that can be ascribed to membrane potential. Thus, in the absence of [Ca2+]o, hyperpolarization can reduce [Ca2+]i, implying that a Ca2+ efflux mechanism is enhanced. It is also observed that [Ca2+]i is increased by depolarization. These results are consistent with the operation of an electrogenic mechanism that exchanges Na+ for Ca2+ in squid giant axon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号