首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibitor of κB kinase (IKK) gamma (IKKγ), also referred to as nuclear factor κB (NF-κB) essential modulator (NEMO), is an important component of the IKK complex. Following the exposure of cells to NF-κB-inducing stimuli, the IKK complex catalyzes the phosphorylation of inhibitor of κB (IκB) proteins, which is a critical step that leads to the activation of NF-κB via the canonical pathway. The exact functions of IKKγ as part of the IKK complex have not been fully elucidated. A number of proteins have been identified as directly interacting with IKKγ and modulating the activity of the IKK complex. This mini review covers eight proteins that have been reported to bind to IKKγ and lead to the suppression of the activities of the IKK complex and hence result in the down-regulation of the activation of NF-κB. The reported mechanisms by which these interactions suppress the activation of the IKK complex include the deubiquitination of IKKγ and competition with upstream activators for binding to IKKγ.  相似文献   

2.
Hermann P  Dobbelaere DA 《FEBS letters》2006,580(21):5023-5028
The intracellular parasite Theileria induces uncontrolled proliferation and host cell transformation. Parasite-induced transformation is accompanied by constitutive activation of IkappaB kinase (IKK), resulting in permanently high levels of activated nuclear factor (NF)-kappaB. IKK activation pathways normally require heat shock protein 90 (Hsp90), a chaperone that regulates the stability and activity of signalling molecules and can be blocked by the benzoquinone ansamycin compound geldanamycin (GA). In Theileria-transformed cells, IkappaBalpha and p65 phosphorylation, NF-kappaB nuclear translocation and DNA binding activity are largely resistant to GA and also NF-kappaB-dependent reporter gene expression is only partly affected. Our findings indicate that parasite-induced IKK activity does not require functional Hsp90.  相似文献   

3.
The synthesis, structure-activity relationships (SAR) and biological evaluation of thiazole based tricyclic inhibitors of IKK2 are described. Compound 9 was determined to be orally efficacious in a murine model of rheumatoid arthritis.  相似文献   

4.
NF-κB activation in response to pro-inflammatory stimuli relies upon phosphorylation of IκBα at serines 32 and 36 by the β subunit of the IκB kinase complex (IKK). In this study, we build upon the observation that highly purified human IKKβ subunit preparations retain this specificity in vitro. We show that IKKβ constructs that lack their carboxy-terminus beginning at the leucine zipper motif fail to phosphorylate IκBα at Ser-32 and Ser-36. Rather, these constructs, which contain the entire IKKβ subunit kinase domain, phosphorylate serine and threonine residues contained within the IκBα carboxy-terminal PEST region. Furthermore, removal of the leucine zipper and helix-loop-helix regions converts IKKβ to monomer. We propose that the helix-loop-helix of the human IKKβ subunit is necessary for restricting substrate specificity toward Ser-32 and Ser-36 in IκBα and that in the absence of its carboxy-terminal protein structural motifs the human IKKβ subunit kinase domain exhibits a CK2-like phosphorylation specificity.  相似文献   

5.
Huang GJ  Zhang ZQ  Jin DY 《FEBS letters》2002,531(3):494-498
Human T-cell leukemia virus type 1 oncoprotein Tax activates NF-kappaB through direct binding to IKK-gamma, the regulatory component of the IkappaB kinase complex. Mechanisms by which IKK-gamma adapts the Tax signal to the IkappaB kinase are poorly understood. Here we demonstrate that IKK-gamma forms homodimer and homotrimer both in vitro and in yeast or mammalian cells through a C-terminal domain comprising amino acids 251-419. In contrast, Tax protein targets a central region of IKK-gamma, which consists of amino acids 201-250. Interestingly, Tax stimulates the oligomerization of IKK-gamma, likely through direct binding. Taken together, our findings suggest a new model of Tax activation of NF-kappaB, in which Tax interacts with IKK-gamma to stimulate its oligomerization.  相似文献   

6.
Biochemical studies have shown that microsomes represent an important subcellular fraction for determining 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) effects. Proteomic analysis by two-dimensional gel-mass spectrometry of liver microsomes was undertaken to gain new insight into the actions of TCDD in male and female rats. Proteomic analysis showed TCDD induced several xenobiotic metabolism enzymes as well as a protein at 90kDa identified by mass spectrometry as IkappaB kinase beta/IKK2. This observation led to the discovery of other NF-kappaB binding proteins and kinases in microsomes and effects by TCDD. Western blotting for IKK and IkappaB family members in microsomes showed a distinct pattern from cytosol. IKK1 and IKK2 were both present in microsomes and were catalytically active although, unlike cytosol, IKKgamma/NEMO was not detectable. TCDD exposure produced an elevation in cytosolic and microsomal IKK activity of both genders. The NF-kappaB binding proteins IkappaBbeta and IkappaBgamma were prevalent in microsomes, while IkappaBalpha and IkappaB epsilon proteins were absent. TCDD treatment produced hyperphosphorylation of microsomal IkappaBbeta in both sexes with females being most sensitive. In cytosol, IkappaBalpha, IkappaBbeta, and IkappaB epsilon, but not IkappaBgamma, were clearly observed but were not changed by TCDD. Overall, proteomic analysis indicated the presence of NF-kappaB pathway members in microsomes, selectively altered by dioxin, which may influence immune and inflammatory responses within the liver.  相似文献   

7.
Ca(2+) and Ca(2+)/calmodulin-dependent protein phosphatase calcineurin (CN) have been known to play crucial roles in immune response and inflammation. Using mouse peritoneal macrophages and RAW 264.7 macrophage cells, we demonstrated that LPS mobilized intracellular free Ca(2+) and induced CN phosphatase activity. iNOS expression and NO secretion in response to LPS were suppressed by Ca(2+) antagonists (TMB-8, BAPTA/AM, and nifedipine) and CN inhibitor (cyclosporin A). Transient expression of constitutively active CN in mouse peritoneal macrophages and RAW 264.7 macrophages strongly activated NF-kappaB, a key mediator of iNOS expression. We also found that CN mediates NF-kappaB activation via IkappaB-alpha hyperphosphorylation and degradation. Overexpression of dominant negative mutant of IKKalpha and -beta demonstrates that only IKKbeta is the target for CN. These results indicate that CN is required for full iNOS expression and the effective activation of NF-kappaB in RAW 264.7 and peritoneal macrophages.  相似文献   

8.
The synthesis, structure-activity relationships (SAR), and biological results of pyridyl-substituted azaindole based tricyclic inhibitors of IKK2 are described. Compound 4m demonstrated potent in vitro potency, acceptable pharmacokinetic and physicochemical properties, and efficacy when dosed orally in a mouse model of inflammatory bowel disease.  相似文献   

9.
Cytokine treatment stimulates the IkappaB kinases, IKKalpha and IKKbeta, which phosphorylate the IkappaB proteins, leading to their degradation and activation of NF-kappaB regulated genes. A clear definition of the specific roles of IKKalpha and IKKbeta in activating the NF-kappaB pathway and the upstream kinases that regulate IKK activity remain to be elucidated. Here, we utilized small interfering RNAs (siRNAs) directed against IKKalpha, IKKbeta and the upstream regulatory kinase TAK1 in order to better define their roles in cytokine-induced activation of the NF-kappaB pathway. In contrast to previous results with mouse embryo fibroblasts lacking either IKKalpha or IKKbeta, which indicated that only IKKbeta is involved in cytokine-induced NF-kappaB activation, we found that both IKKalpha and IKKbeta were important in activating the NF-kappaB pathway. Furthermore, we found that the MAP3K TAK1, which has been implicated in IL-1-induced activation of the NF-kappaB pathway, was also critical for TNFalpha-induced activation of the NF-kappaB pathway. TNFalpha activation of the NF-kappaB pathway is associated with the inducible binding of TAK1 to TRAF2 and both IKKalpha and IKKbeta. This analysis further defines the distinct in vivo roles of IKKalpha, IKKbeta and TAK1 in cytokine-induced activation of the NF-kappaB pathway.  相似文献   

10.
Fanconi anemia (FA), a genetic disorder predisposing to aplastic anemia and cancer, is characterized by hypersensitivity to DNA-damaging agents and oxidative stress. Five of the cloned FA proteins (FANCA, FANCC, FANCE, FANCF, FANCG) appear to be involved in a common functional pathway that is required for the monoubiquitination of a sixth gene product, FANCD2. Here, we report that FANCA associates with the IkappaB kinase (IKK) signalsome via interaction with IKK2. Components of the FANCA complex undergo rapid, stimulus-dependent changes in phosphorylation, which are blocked by kinase-inactive IKK2 (IKK2 K > M). When exposed to mitomycin C, cells expressing IKK2 K > M develop a cell cycle abnormality characteristic of FA. Thus, FANCA may function to recruit IKK2, thus providing the cell a means of rapidly responding to stress.  相似文献   

11.
【目的】本研究旨在鉴定灰飞虱Laodelphax striatellus中的IκB激酶(IκB kinase, IKK)相关基因,并调查其在灰飞虱抗病毒中的作用,以进一步深入理解传毒介体应对植物病毒的先天免疫机制。【方法】通过生物信息学鉴定了灰飞虱基因组中IKK相关基因;以无毒及水稻条纹病毒(rice stripe virus, RSV)侵染的灰飞虱为材料,利用RT-PCR方法检测IKK相关基因在无毒灰飞虱各个龄期(卵、1-5龄若虫、雄成虫和雌成虫)及成虫不同组织(肠道、唾液腺、血淋巴、脂肪体、卵巢和精巢)中的表达量;利用qRT-PCR方法检测无毒以及RSV侵染后的灰飞虱IKK相关基因在各个龄期及成虫不同组织中的表达量;通过对3龄若虫注射IKK基因dsRNA进行RNA干扰后,利用qRT-PCR检测带毒灰飞虱中表示病毒含量的RSV外壳蛋白(CP)基因转录水平。【结果】在灰飞虱基因组中鉴定到了两个IKK相关基因即IKKα(GenBank登录号:MK903504)和TANK结合激酶1(TANK-binding kinase1)基因TBK1(GenBank登录号:MN124506)。IKKα开...  相似文献   

12.
NEMO is an essential regulatory component of the IκB kinase (IKK) complex, which controls activation of the NF-κB signaling pathway. Herein, we show that NEMO exists as a disulfide-bonded dimer when isolated from several cell types and analyzed by SDS-polyacrylamide gel electrophoresis under non-reducing conditions. Treatment of cells with hydrogen peroxide (H2O2) induces further formation of NEMO dimers. Disulfide bond-mediated formation of NEMO dimers requires Cys54 and Cys347. The ability of these residues to form disulfide bonds is consistent with their location in a NEMO dimer structure that we generated by molecular modeling. We also show that pretreatment with H2O2 decreases TNFα-induced IKK activity in NEMO-reconstituted cells, and that TNFα has a diminished ability to activate NF-κB DNA binding in cells reconstituted with NEMO mutant C54/347A. This study implicates NEMO as a target of redox regulation and presents the first structural model for the NEMO protein.  相似文献   

13.
Interleukin-1 (IL-1) binds to its type I receptors (IL-1R), which in complex with IL-1R accessory protein (IL-1R AcP) induces various intracellular signaling events. We report here that IL-1 triggers the recruitment of phosphoinositide 3-kinase (PI 3-kinase) to a signaling complex and induces its lipid kinase activity in a biphasic manner. This IL-1-induced complex consists of IL-1R, IL-1R AcP, PI 3-kinase, and the IL-1-receptor-associated kinase (IRAK). Deletion of the C-terminus 27 amino acids of IL-1R AcP resulted in a mutant, CDelta27, that could not recruit PI 3-kinase to the signalsome nor stimulate PI3-kinase activity. Moreover, CDelta27 functioned as a dominant-negative mutant that inhibited IL-1-induced PI 3-kinase and NFkappaB activation. CDelta27, however, had no effect on IL-1-dependent activation of the Jun N-terminal kinase (JNK), indicating that distinct regions of IL-1R AcP mediate the activation of PI 3-kinase and JNK. Thus, our results identified a functional region in the IL-1R AcP required for the recruitment and activation of PI 3-kinase.  相似文献   

14.
15.
Receptor-interacting protein (RIP) is a serine/threonine protein kinase that is critically involved in tumor necrosis factor receptor-1 (TNF-R1)-induced NF-kappaB activation. In a yeast two-hybrid screening for potential RIP-interacting proteins, we identified a novel protein designated as NKAP. Although NKAP interacts with RIP in yeast, NKAP does not interact with RIP in mammalian cells in co-immunoprecipitation experiments. When overexpressed in 293 cells, NKAP activated NF-kappaB in a dose-dependent manner. Moreover, down-regulation of NKAP by antisense RNA significantly inhibited TNF- and IL-1-induced NF-kappaB activation. Immunofluorescent staining indicated that NKAP was localized in the nucleus. Our findings suggest that NKAP is a novel nuclear regulator of TNF- and IL-1-induced NF-kappaB activation.  相似文献   

16.
《Molecular cell》2022,82(13):2415-2426.e5
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
Toll-like receptors (TLR) are pivotal in macrophage activation. The molecular mechanisms controlling TLR signaling and macrophage activation are not completely understood. Zc3h12d is originally identified as a possible tumor suppressor gene. However, its function remains unknown. We here report that Zc3h12d negatively regulates TLR signaling and macrophage activation. Zc3h12d was enriched in spleen, lung and lymph node. In macrophages, the expression of Zc3h12d was remarkably induced by TLR ligands through JNK and NF-κB signal pathways. On the other hand, overexpression of Zc3h12d significantly inhibited TLR2 and TLR4 activation-induced JNK, ERK and NF-κB signaling as well as macrophage inflammation. Similar to Zc3h12a/MCPIP1, Zc3h12d also decreased the global cellular protein ubiquitination. These findings suggest that Zc3h12d is a novel negative feedback regulator of TLR signaling and macrophage activation and thus may play a role in host immunity and inflammatory diseases.  相似文献   

19.
20.
T cells devoid of tumor necrosis factor receptor associated factor-3 (Traf3) exhibit decreased proliferation, sensitivity to apoptosis, and an improper response to antigen challenge. We therefore hypothesized that TRAF3 is critical to the growth of malignant T cells. By suppressing TRAF3 protein in different cancerous T cells, we found that anaplastic large cell lymphoma (ALCL) cells require TRAF3 for proliferation. Since reducing TRAF3 results in aberrant activation of the noncanonical nuclear factor-κB (NF-κB) pathway, we prevented noncanonical NF-κB signaling by suppressing RelB together with TRAF3. This revealed that TRAF3 regulates proliferation independent of the noncanonical NF-κB pathway. However, suppression of NF-κB-inducing kinase (NIK) along with TRAF3 showed that high levels of NIK have a partial role in blocking cell cycle progression. Further investigation into the mechanism by which TRAF3 regulates cell division demonstrated that TRAF3 is essential for continued PI3K/AKT and JAK/STAT signaling. In addition, we found that while NIK is dispensable for controlling JAK/STAT activity, NIK is critical to regulating the PI3K/AKT pathway. Analysis of the phosphatase and tensin homolog (PTEN) showed that NIK modulates PI3K/AKT signaling by altering the localization of PTEN. Together our findings implicate TRAF3 as a positive regulator of the PI3K/AKT and JAK/STAT pathways and reveal a novel function for NIK in controlling PI3K/AKT activity. These results provide further insight into the role of TRAF3 and NIK in T cell malignancies and indicate that TRAF3 differentially governs the growth of B and T cell cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号