首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
pH Dependences of steady-state kinetic parameters of cytochrome chains of submitochondrial particles have been studies. It has been shown that the lifetimes of activated states (tau) of the pairs of cytochromes b leads to c1 and a leads to a3 have different pH dependences; those for the c1 leads to c and c leads to a cytochrome pairs being similar. The rate constants for the non-activated state of the respiratory chains decreased for the b leads to c1 pair and increased for the a leads to a3 pair when the pH value was increased. The values of pK calculated from these dependences for the pairs b leads to c1 and a leads to a3 were 7.2 and 8.9, respectively. It has been supposed that the ratio of activated to non-activated electron carriers may be controlled by the local pH value in the mitochondrial membrane, the latter being dependent upon the rate of electron transfer. The kinetic model based on this assumption allows one to explain the experimental dependences on pH of the rate constants for cytochromes b leads to c, and a leads to a3. The values of the diffusion rate constants for H+ and OH- ions in the mitochondrial membrane estimated from these kinetic data obtained in this study were 10(4)--10(5) s-1 and 10(2)--10(3) s-1, respectively.  相似文献   

2.
pH Dependences of steady-state kinetic parameters of cytochrome chains of submitochondrial particles have been studied. It has been shown that the lifetimes of activated states (τ) of the pairs of cytochromes bc1 and aa3 have different pH dependences; those for the c1c and ca cytochrome pairs being similar. The rate constants for the non-activated state of the respiratory chains decreased for the bc1 pair and increased for the aa3 pair when the pH value was increased.The values of pK calculated from these dependences for the pairs bc1 and aa3 were 7.2 and 8.9, respectively. It has been supposed that the ratio of activated to non-activated electron carriers may be controlled by the local pH value in the mitochondrial membrane, the latter being dependent upon the rate of electron transfer. The kinetic model based on this assumption allows one to explain the experimental dependences on pH of the rate constants for cytochromes bc, and aa3.The values of the diffusion rate constants for H+ and OH? ions in the mitochondrial membrane estimated from these kinetic data obtained in this study weree 104–105 s?1 and 102–103 s?1, respectively.  相似文献   

3.
The reaction of fully reduced and mixed-valence cytochrome oxidase with O2 has been followed in flow-flash experiments, starting from the CO complexes, at 428, 445, 605 and 830 nm between pH 5.8b and 9.0 in the temperature range of 2-40 degrees C. With the fully reduced enzyme, four kinetic phase with rate constants at pH 7.4 and 25 degrees C of 9 x 10(4), 2.5 x 10(4), 1.0 x 10(4) and 800 s(-1), respectively, are observed. The rates of the three last phases display a very small temperature dependence, corresponding to activation energies in the range 13-54 kJ x mol(-1). The rates of the third and fourth phases decrease at high pH due to the deprotonation of groups with pKa values of 8.3 and 8.8, respectively, but also the second phase appears to have a small pH dependence. In the reaction of the mixed-valence enzyme, three kinetic phases with rate constants at pH 7.4 and 25 degrees C of 9 x 10(4), 6000 and 150 s(-1), respectively, are observed. The third phase only has a small temperature dependence, corresponding to an activation energy of 20 kJ x mol(-1). No pH dependence could be detected for any phase. Reaction schemes consistent with the experimental observations are presented. The pH dependencies of the rates of the two final phase in the reaction of the fully reduced enzyme are proposed to be related to the involvement of protons in the reduction of a peroxide intermediate. The temperature dependence data suggest that the reorganization energies and driving forces are closely matched in all electron transfer steps with both enzyme forms. It is suggested that the slowest step in the reaction of the mixed-valence enzyme is a conformation change involved in the reaction cycle of cytochrome oxidase as a proton pump.  相似文献   

4.
Rate constants for reduction of cytochrome b561 by internal ascorbate (k0A) and oxidation by external ferricyanide (k1F) were determined as a function of pH from rates of steady-state electron transfer across chromaffin-vesicle membranes. The pH dependence of electron transfer from cytochrome b561 to ferricyanide (k1F) may be attributed to the pH dependence of the membrane surface potential. The rate constant for reduction by internal ascorbate (k0A), like the previously measured rate constant for reduction by external ascorbate (k-1A), is not very pH-dependent and is not consistent with reduction of cytochrome b561 by the ascorbate dianion. The rate at which ascorbate reduces cytochrome b561 is orders of magnitude faster than the rate at which it reduces cytochrome c, despite the fact that midpoint reduction potentials favor reduction of cytochrome c. Moreover, the rate constant for oxidation of cytochrome b561 by ferricyanide (k1F) is smaller than the previously measured rate constant for oxidation by semidehydroascorbate, despite the fact that ferricyanide has a higher midpoint reduction potential. These results may be reconciled by a mechanism in which electron transfer between cytochrome b561 and ascorbate/semidehydroascorbate is accelerated by concerted transfer of a proton. This may be a general property of biologically significant electron transfer reactions of ascorbic acid.  相似文献   

5.
At 20 degrees C, in a phosphate buffer, pH 5,8--8,0, methanol and aniline interactions with hemoglobin and cytochrome c were studied using the difference spectrophotometry method. The difference absorption spectra are characterized by following values of lambdamax and lambdamin (nm): I--MeOH--hemoglobin (405 and 420), II-MeOH--cytochrome c (405--406 and 419--422), III--aniline--cytochrome c (421--410 and 401--396). The values of lambdamax and lambdamin for system III are shifted in the region of shorter wavelengths from 421 to 410 nm and from 401 to 396 nm, respectively within the pH range of 5,8--7,95. From difference spectra for systems I, II, III the dissociation constants of complexes obtained, Ks were calculated. Log Ks is linearly dependent on pH. System I is characterized by two values of Ks at all pH. The Ks values were calculated in general form from the dependences obtained. The nature of the complexes is discussed.  相似文献   

6.
Steady-state kinetics of electron transfer through the cytochrome chain of uncoupled ultrasonic submitochondrial particles at different pH values were studied. The rate constants calculated according to Pring's equation (k1=V/Prpoxt i+1) were found to increase linearly with the increase in the rate of electron transfer. Linearity was observed, however, only at relatively low rates of electron transfer. Several kinetic models were developed and analysed to fit the experimental data on the basis of the suggested activation of respiratory chains induced by their functioning. The best agreement with the experimental data was obtained with the model implying that the rate of activation of the electron carriers is directly proportional to the overall rate of electron transfer and the portion of non-activated respiratory chains in the system. It followed therefrom that electron transfer through already activated chains induced activation of adjacent non-activated chains. This model made it possiple to determine the rate constants for non-activated (ki) and activated (k) carrier states and the life-times of activated carriers (tau).  相似文献   

7.
M R Mauk  P D Barker  A G Mauk 《Biochemistry》1991,30(41):9873-9881
Two potentiometric methods have been used to study the pH-dependent changes in proton binding that accompany complex formation between cytochrome c and cytochrome b5. With one method, the number of protons bound or released upon addition of one cytochrome to the other has been measured as a function of pH. The results from these studies are correlated with the complexation-induced difference titration curve calculated from the titration curves of the preformed complex and of the individual proteins. Both methods demonstrate that complex formation at acid pH is accompanied by proton release, that complex formation at basic pH is accompanied by proton uptake, and that the change in proton binding at neutral pH, where stability of complex formation is maximal, is relatively small. Under all conditions studied, the stoichiometry of cytochrome c-cytochrome b5 complex formation is 1:1 with no evidence of higher order complex formation. Although the dependence of complex formation on pH for interaction between different species of cytochrome c and cytochrome b5 are qualitatively similar, they are quantitatively different. In particular, complex formation between yeast iso-1-cytochrome c and lipase-solubilized bovine cytochrome b5 occurs with a stability constant that is 10-fold greater than observed for the other two pairs of proteins under all conditions studied. Interaction between these two proteins is also significantly less dependent on ionic strength than observed for complexes formed by horse heart cytochrome c with either form of cytochrome b5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Nuclear magnetic resonance (nmr) spectroscopy has been used to investigate the heme undecapeptide from cytochrome c. Assignments of resonances to specific residues have been made based on spin decoupling, redox titration, and the pH and temperature dependence of resonance lines. An outline structure is presented based on the assignments, secondary shift data, and the x-ray crystal structure of cytochrome c. An equation is derived to relate the width of an nmr line during a redox titration to the percentage of each oxidation state. Using this equation the self-exchange rate constant for electron transfer for the heme peptide is 1.3 x 10(7) M-1 sec-1 at 330 degrees K. Discussion of the self-exchange rate constants of cytochrome c, cytochrome c3, and cytochrome c551 is related to this constant for the heme undecapeptide.  相似文献   

9.
J Everse  N Kujundzic 《Biochemistry》1979,18(12):2668-2673
A detailed investigation of the reduction of cytochrome c by glutathione has shown that the reaction proceeds through several steps. A rapid combination of the reducing agent with the cytochrome leads to the formation of a glutathione-cytochrome intermediate in which the glutathione most likely interacts with the edge of the heme moiety. The electron transfer takes place in a subsequent slower step. Since cytochrome c(III) exists in two conformational forms at neutral pH [Kujundzic, N., & Everse, J. (1978) Biochem. Biophys. Res. Commun. 82, 1211], the reduction of cytochrome c by glutathione may be represented by cyt c(III) + GS- reversible K1 cyt c(III) ... GS- reversible k1 products cyt c*(III) + GS- reversible K2 cyt c*(III) ... GS- reversible k2 products At 25 degrees C, pH 7.5, and an ionic strength of 1.0 (NaCl), k1 = 1.2 X 10(-3) S-1, k2 = 2.0 X 10(-3) S-1, k1 = 2.9 X 10(3) M-1, and K2 = 5.3 X 10(3) M-1. The reaction is catalyzed by trisulfides, and second-order rate constants of 4.55 X 10(3) and 7.14 X 10(3) M-1 S-1 were obtained for methyl trisulfide and cysteine trisulfide, respectively.  相似文献   

10.
Laser-flash kinetic absorption spectroscopy has been used to compare the rate constants for electron transfer from reduced plastocyanin and cytochrome c552, obtained from the green alga Monoraphidium braunii, to photooxidized P700 (P700+) in photosystem I (PSI) particles from spinach Sigmoidal protein concentration dependence for the observed electron-transfer rate constants are obtained for both proteins. In the absence of added salts, the P700+ reduction rate increases as the pH decreases from approximately 8 to 5.5, then decreases to pH 3.5, this effect being more pronounced with cytochrome c552 than with plastocyanin. At neutral pH, plastocyanin is a more efficient electron donor to P700+ than cytochrome c552, whereas at pH 5.5, which is closer to physiological conditions, the two redox proteins react with approximately equal rate constants. In the presence of increasing concentrations of added salts, the P700+ reduction rate constants for both proteins increase at pH greater than 5.5, but decrease at pH less than 4. At neutral pH, the observed rate constants for both algal proteins have a biphasic dependence on sodium chloride concentration, increasing in a parallel manner with increasing salt concentration, reaching a maximum value at 50 mM NaCl, then decreasing. A similar biphasic dependence is obtained with magnesium chloride, but in this case the maximum value is reached at salt concentrations ten times smaller, suggesting a specific role for the divalent cations in the electron-transfer reaction.  相似文献   

11.
The kinetics of flavin semiquinone reduction of the components of the 1:1 complex formed by cytochrome c with either cytochrome b5 or a derivative of cytochrome b5 in which the heme propionates are esterified (DME-cytochrome b5) have been studied. The rate constant for the reduction of horse heart cytochrome c by the electrostatically neutral lumiflavin semiquinone (LfH) is unaffected by complexation with native cytochrome b5 at pH 7. However, complex formation with DME-cytochrome b5 (pH 7) decreases by 35% the rate constant for cytochrome c reduction by LfH. At pH 8, complex formation with native cytochrome b5 decreases the rate constant for cytochrome c reduction by LfH markedly, whereas the rate constant for cytochrome c reduction, either unbound or in the complex formed with DME-cytochrome b5, is increased 2-fold relative to pH 7. These results indicate that the accessibility of the cytochrome c heme is not the same in the complexes formed with the two cytochrome b5 derivatives and that the docking geometry of the complex formed by the two native cytochromes is pH dependent. Binding of horse heart and tuna cytochromes c to native and DME-cytochromes b5 decreases the rate constants for reduction of cytochrome c by the negatively charged flavin mononucleotide semiquinone (FMNH) by approximately 30% and approximately 40%, respectively. This finding is attributed to substantial neutralization of the positive electrostatic potential surface of cytochrome c that occurs when it binds to either form of cytochrome b5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A minimal catalytic cycle for cytochrome c oxidase has been suggested, and the steady-state kinetic equation for this mechanism has been derived. This equation has been used to simulate experimental data for the pH dependence of the steady-state kinetic parameters, kcat and Km. In the simulations the rate constants for binding and dissociation of cytochrome c and for two internal electron-transfer steps have been allowed to vary, whereas fixed experimental values (for pH 7.4) have been used for the other rate constants. The results show that the dissociation of the product, ferricytochrome c, cannot be rate-limiting under all conditions, but that intramolecular electron-transfer steps also limit the rate. They also demonstrate that Km can differ considerably from the dissociation constant for the cytochrome c-oxidase complex. Published values for the rate constant for the dissociation of ferricytochrome c are too small to account for the steady-state rates. It is suggested that, at high concentrations, ferryocytochrome c transfers an electron to a cytochrome c molecule which remains bound to the oxidase. This can also explain the nonhyperbolic kinetics, which is observed at low substrate concentrations.  相似文献   

13.
The reaction of the trioxidocarbonate(*1-) radical (CO (3) (*-) , "carbonate radical anion") with cytochrome c was studied by pulse radiolysis at alkaline pH and room temperature. With iron(III) cytochrome c, CO (3) (*-) reacts with the protein moiety with rate constants of (5.1 +/- 0.6) x 10(7) M(-1) s(-1) (pH 8.4, I approximately 0.27 M) and (1.0 +/- 0.2) x 10(8) M(-1) s(-1) (pH 10, I = 0.5 M). The absorption spectrum of the haem moiety was not changed, thus, amino acid radicals produced on the protein do not reduce the haem. The pH-dependent difference in rate constants may be attributed to differences in ionization states of amino acids and to the change in the conformation of the protein. With iron(II) cytochrome c, CO (3) (*-) oxidizes the haem quantitatively, presumably via electrostatic guidance of the radical to the solvent-accessible haem edge, with a different pH dependence: at pH 8.4, the rate constant is (1.1 +/- 0.1) x 10(9) M(-1) s(-1) and, at pH 10, (7.6 +/- 0.6) x 10(8) M(-1) s(-1). We propose that CO (3) (*-) oxidizes the iron center directly, and that the lower rate observed at pH 10 is due to the different charge distribution of iron(II) cytochrome c.  相似文献   

14.
The reversible folding of cytochrome c in urea at pH 4.0 was investigated by repetitive pressure perturbation kinetics and by equilibrium spectroscopic methods. Two folding reactions were observed in the 1 ms to 10 s time range. The rates and amplitudes of these reactions depend on urea concentration in a complex manner, which is different for each process. The absorbance spectra of the kinetic amplitudes of the two reactions also differ from each other. A model with a three-state mechanism can quantitatively account for all of the kinetic and equilibrium data, and it enables us to determine the rate constants and volume changes of the two steps. If a rapid protonation step is added to the mechanism, the analysis can be extended to calculate the pH dependence of the rate and amplitude of the faster folding step. This pH dependence is in excellent agreement with previously published data [Tsong, T. Y. (1977) J. Biol. Chem. 252, 8778-8780]. Kinetic experiments in the 695-nm band show clearly that the axial ligand methionine-80 is involved in the slow folding process and the other axial ligand, histidine-18, is involved in the fast process. Additional experiments with a cyanogen bromide fragment of the protein, and fluorescence detection of the folding kinetics of the intact protein, support an interpretation of the model in terms of known structural elements of cytochrome c. This work provides new information about the mechanism of the folding of cytochrome c, resolves conflicts in earlier interpretations, and demonstrates the applicability of the repetitive pressure perturbation kinetics method to protein folding.  相似文献   

15.
The formylation of the ring nitrogen atom of the tryptophan residue in cytochrome c was carried out and consequent changes in the kinetic properties of the protein were investigated. The reduction of formylated cytochrome c by Cr2+ was studied by stopped-flow techniques. At pH 6.5 the reduction process shows the presence of two phases. One phase (k = 4 X 10(4) M-1-s-1) is dependent on Cr2+ concentration and one phase (k = 5.0 s-1) is not. A study of the temperature dependence of the two phases yields values for their activation energies of 38.6kJ-mol-1 and 42.4kJ-mol-1 respectively. The reaction of the reduced formylated cytochrome c with CO was followed by means of both stopped-flow techniques and flash photolysis. The combination with CO at pH 6.8 measured in stopped-flow experiments shows two phases, both dependent on the concentration of CO (k1 = 1.8 X 10(2) M-1-s-1). If CO was dissociated from the protein by photolysis and then allowed to recombine with it, it was found to do so in a simple manner, at a rate which depended on the concentration of CO (k = 1.9 X 10(2) M-1-s-1). A tentative model which can accommodate these findings is proposed. The reaction of the oxidized form of formylated cytochrome c with NO was followed by means of stopped-flow techniques. The reaction was found to be biphasic with one phase dependent on the concentration of NO (k = 2.8 X 10(3) M-1-s-1) and one phase (k = 0.2x-1) independent of the concentration of NO. This behaviour is compared with that of the native molecule. A comparison of these kinetic observations with those on other tryptophan-specific modifications leads to the conclusion that the main alteration in kinetic properties is due, not to the nature of the modifying group, but rather to the disruption of the normal environment of the haem.  相似文献   

16.
1. The dependences of the reduction of ferricytochrome c-555 in the reaction center-cytochrome c complex on the redox potential and pH were investigated using N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), ferrocyanide, and reduced 2,5-dimethyl-p-quinone as electron donors. 2. In the reduction of cytochrome c-555 by TMPD, the unprotonated form was the exclusive electron donor to the cytochrome with a second-order rate constant of 1.0 X 10(5) M-1.s-1. 3. Ferrocyanide reduced cytochrome c-555 slowly with a rate constant of 7.8 X 10(3) M-1.s-1 at infinite salt concentration. The value of -5.2 X 10(-4) elementary charge/A2 was estimated as the surface charge density in the vicinity of cytochrome c-555 by analyzing the salt effect on the cytochrome reduction using the Gouy-Chapman theory. 4. The characteristics of the dependences of the reduction of cytochrome c-555 by reduced 2,5-dimethyl-p-quinone on the redox potential and pH were well explained by the redox potential and pH dependences of the formation of the semiquinone. In the neutral-to-alkaline pH range the anionic semiquinone was the main electron-donating species with a second-order rate constant of 6.0 X 10(7) m-1.s-1.  相似文献   

17.
The one-electron transfer reaction from reduced flavocytochrome b2 (fully reduced by three electron equivalents) to ferricytochrome c, both purified from the yeast Hansenula anomala, has been studied using stopped-flow spectrophotometry in the course of a single turnover, for reactants initially mixed in a heme molar ratio equal to one. The cytochrome c reduction proceeded to completion through an apparently first-order process. Depending on the experimental conditions (concentrations and or ionic strength), the reduction is of second-order or first-order character. To interpret these kinetic results computer simulation studies have been performed based on a kinetic scheme involving, besides the formation of a complex before the electron transfer step, intramolecular electron transfer steps within flavocytochrome b2 to maintain the concentration of the specific electron donor center, the reduced cytochrome b2. As far as the cytochrome c reduction rate constant, ka, and its variations were concerned the simulated data showed that this complicated scheme could approximate a mechanism which is by far the simplest, involving only the two former steps. Such a scheme accounts firstly for the hyperbolic dependence of the rate of reduction of cytochrome c, ka, upon reductant concentrations which had provided clear evidence for the kinetic existence of a complex in the reaction pathway. At 5 degrees C the rate constant for the electron transfer is 380 s-1 with an activation energy of 13.8kJ mol-1 (3.3 kcal mol-1). Secondly it predicts the observed variations of ka with ionic strength and provides estimates of the rate constants of the binding step.  相似文献   

18.
The reaction between cytochrome c1 and cytochrome c   总被引:3,自引:0,他引:3  
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 . 10(7) M-1 . s-1 at low ionic strength (I = 223 mM, 10 degrees C). The value of this rate constant decreases to 1.8 . 10(5) M-1 . s-1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 . 10(5) M-1 . s-1 and k-1 = 3.3 . 10(5) M-1 . s-1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10 degrees C). The 'equilibrium' constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ in equilibrium or formed from cytochrome c3+1 + cytochrome c2+.  相似文献   

19.
M R Mauk  A G Mauk  P C Weber  J B Matthew 《Biochemistry》1986,25(22):7085-7091
The stability of the complex formed between cytochrome c and dimethyl ester heme substituted cytochrome b5 (DME-cytochrome b5) has been determined under a variety of experimental conditions to evaluate the role of the cytochrome b5 heme propionate groups in the interaction of the two native proteins. Interaction between cytochrome c and the modified cytochrome b5 was found to produce a difference spectrum in the visible range that is very similar to that generated by the interaction of the native proteins and that can be used to monitor complex formation between the two proteins. At pH 8 [25 degrees C (HEPPS), I = 5 mM], DME-cytochrome b5 and cytochrome c form a 1:1 complex with an association constant KA of 3 (1) X 10(6) M-1. This pH is the optimal pH for complex formation between these two proteins and is significantly higher than that observed for the interaction between the two native proteins. The stability of the complex formed between DME-cytochrome b5 and cytochrome c is strongly dependent on ionic strength with KA ranging from 2.4 X 10(7) M-1 at I = 1 mM to 8.2 X 10(4) M-1 at I = 13 mM [pH 8.0 (HEPPS), 25 degrees C]. Calculations for the native, trypsin-solubilized form of cytochrome b5 and cytochrome c confirm that the intermolecular complex proposed by Salemme [Salemme, F. R. (1976) J. Mol. Biol. 102, 563] describes the protein-protein orientation that is electrostatically favored at neutral pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The oxidation-reduction properties of free cytochrome b2 isolated by controlled proteolysis from flavocytochrome b2, i.e. the flavodehydrogenase-bound cytochrome b2, were investigated by using stopped-flow spectrophotometry. The rapid kinetics of the reduction of cytochrome b2 by flavocytochrome b2 in the presence of L-lactate are reported. The self-exchange rate constant between reduced cytochrome b2 bound to the flavodehydrogenase and free cytochrome b2 was determined to be 10(5) M-1 X S-1 at 5 degrees C, I 0.2 and pH 7.0. The specific electron-transfer reaction between reduced cytochrome b2 and cytochrome c was also studied, giving an apparent second-order rate constant of 10(7) M-1 X S-1 at 5 degrees C, I 0.2 and pH 7.0. This electron-exchange rate is slightly modulated by ionic strength, following the Debye-Hückel relationship with a charge factor Z1Z2 = -1.9. Comparison of these data with those for the reduction of cytochrome c by flavodehydrogenase-bound cytochrome b2 [Capeillère-Blandin (1982) Eur. J. Biochem. 128, 533-542] leads to the conclusion that the intramolecular electron exchange between haem b2 and haem c within the reaction complex occurs at a rate very similar to that determined experimentally in presence of the flavodehydrogenase domain. The low reaction rate observed with free cytochrome b2 is ascribed to the low stability of the reaction complex formed between free cytochrome b2 and cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号