首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hughson, R. L., J. K. Shoemaker, M. E. Tschakovsky, and J. M. Kowalchuk. Dependence muscle ofO2on blood flow dynamics at the onset of forearm exercise.J. Appl. Physiol. 81(4):1619-1626, 1996.The hypothesis that the rate of increase inmuscle O2 uptake (O2 mus)at the onset of exercise is influenced by muscle blood flow was testedduring forearm exercise with the arm either above or below heart levelto modify perfusion pressure. Ten young men exercised at a power of~2.2 W, and five of these subjects also worked at 1.4 W. Blood flowto the forearm was calculated from the product of blood velocity andcross-sectional area obtained with Doppler techniques. Venous blood wassampled from a deep forearm vein to determineO2 extraction. The rate ofincrease inO2 musand blood flow was assessed from the mean response time (MRT), which isthe time to achieve ~63% increase from baseline to steady state. Inthe arm below heart position during the 2.2-W exercise, blood flow andO2 musboth increased, with a MRT of ~30 s. With the arm above the heart atthis power, the MRTs for blood flow [79.8 ± 15.7 (SE)s] and O2 mus(50.2 ± 4.0 s) were both significantly slower. Consistent withthese findings were the greater increases in venous plasma lactateconcentration over resting values in the above heart position (2.8 ± 0.4 mmol/l) than in the below heart position (0.9 ± 0.2 mmol/l). At the lower power, both blood flow andO2 musalso increased more rapidly with the arm below compared with above theheart. These data support the hypothesis that changes in blood flow atthe onset of exercise have a direct effect on oxidative metabolismthrough alterations in O2transport.

  相似文献   

2.
Respiratory muscle work compromises leg blood flow during maximal exercise   总被引:10,自引:0,他引:10  
Harms, Craig A., Mark A. Babcock, Steven R. McClaran, DavidF. Pegelow, Glenn A. Nickele, William B. Nelson, and Jerome A. Dempsey.Respiratory muscle work compromises leg blood flow during maximalexercise. J. Appl. Physiol.82(5): 1573-1583, 1997.We hypothesized that duringexercise at maximal O2 consumption (O2 max),high demand for respiratory muscle blood flow() would elicit locomotor muscle vasoconstrictionand compromise limb . Seven male cyclists(O2 max 64 ± 6 ml · kg1 · min1)each completed 14 exercise bouts of 2.5-min duration atO2 max on a cycleergometer during two testing sessions. Inspiratory muscle work waseither 1) reduced via aproportional-assist ventilator, 2)increased via graded resistive loads, or3) was not manipulated (control).Arterial (brachial) and venous (femoral) blood samples, arterial bloodpressure, leg (legs;thermodilution), esophageal pressure, andO2 consumption(O2) weremeasured. Within each subject and across all subjects, at constantmaximal work rate, significant correlations existed(r = 0.74-0.90;P < 0.05) between work of breathing(Wb) and legs (inverse), leg vascular resistance (LVR), and leg O2(O2 legs;inverse), and between LVR and norepinephrine spillover. Mean arterialpressure did not change with changes in Wb nor did tidal volume orminute ventilation. For a ±50% change from control in Wb,legs changed 2 l/min or 11% of control, LVRchanged 13% of control, and O2extraction did not change; thusO2 legschanged 0.4 l/min or 10% of control. TotalO2 max was unchangedwith loading but fell 9.3% with unloading; thusO2 legsas a percentage of totalO2 max was 81% incontrol, increased to 89% with respiratory muscle unloading, anddecreased to 71% with respiratory muscle loading. We conclude that Wbnormally incurred during maximal exercise causes vasoconstriction inlocomotor muscles and compromises locomotor muscle perfusion andO2.

  相似文献   

3.
Age, fitness, and regional blood flow during exercise in the heat   总被引:3,自引:0,他引:3  
Ho, C. W., J. L. Beard, P. A. Farrell, C. T. Minson, and W. L. Kenney. Age, fitness, and regional blood flow during exercisein the heat. J. Appl. Physiol. 82(4):1126-1135, 1997.During dynamic exercise in warm environments,the requisite increase in skin blood flow (SkBF) is supported by anincrease in cardiac output (c) and decreases insplanchnic (SBF) and renal blood flows (RBF). To examine interactionsbetween age and fitness in determining this integrated response, 24 men, i.e., 6 younger fit (YF), 6 younger sedentary (YS), 6 older fit (OF), and 6 older sedentary (OS) rested for 50 min, thenexercised at 35 and 60% maximalO2 consumption(O2 max) at36°C ambient temperature. YF had a significantly higherc and SkBF than any other group during exercise,but fitness level had no significant effect on any measured variable inthe older men. At 60%O2 max, younger subjects had significantly greater decreases in SBF and RBF than theolder men, regardless of fitness level. Total flow redirected fromthese two vascular beds (SBF + RBF) followed YF >> YS > OF > OS. A rigorous 4-wk endurance training programincreased exercise SkBF in OS, but SBF and RBF were unchanged.Under these conditions, older men distribute cdifferently to regional circulations, i.e., smaller increases in SkBFand smaller decreases in SBF and RBF. In younger subjects, the higherSkBF associated with a higher fitness level is a function of both ahigher c and a greater redistribution of flow fromsplanchnic and renal circulations, but the attenuated splanchnic andrenal vasoconstriction in older men does not appear to change withenhanced aerobic fitness.

  相似文献   

4.
Carvalho, Paula, Jacob Hildebrandt, and Nirmal B. Charan.Changes in bronchial and pulmonary arterial blood flow with progressive tension pneumothorax. J. Appl.Physiol. 81(4): 1664-1669, 1996.We studied theeffects of unilateral tension pneumothorax and its release on bronchialand pulmonary arterial blood flow and gas exchange in 10 adultanesthetized and mechanically ventilated sheep with chronicallyimplanted ultrasonic flow probes. Right pleural pressure (Ppl) wasincreased in two steps from 5 to 10 and 25 cmH2O and then decreased to 10 and5 cmH2O. Each level of Pplwas maintained for 5 min. Bronchial blood flow, right and leftpulmonary arterial flows, cardiac output(T),hemodynamic measurements, and arterial blood gases were obtained at theend of each period. Pneumothorax resulted in a 66% decrease inT, bronchialblood flow decreased by 84%, and right pulmonary arterial flowdecreased by 80% at Ppl of 25 cmH2O(P < 0.001). At peak Ppl, themajority ofT was due toblood flow through the left pulmonary artery. With resolution ofpneumothorax, hemodynamic parameters normalized, although abnormalitiesin gas exchange persisted for 60-90 min after recovery and wereassociated with a decrease in total respiratory compliance.

  相似文献   

5.
Yan, Sheng, Pawel Sliwinski, and Peter T. Macklem.Association of chest wall motion and tidal volume responses during CO2 rebreathing.J. Appl. Physiol. 81(4):1528-1534, 1996.The purpose of this study is to investigate theeffect of chest wall configuration at end expiration on tidal volume(VT) response duringCO2 rebreathing. In a group of 11 healthy male subjects, the changes in end-expiratory andend-inspiratory volume of the rib cage (Vrc,E andVrc,I, respectively) and abdomen (Vab,E and Vab,I, respectively) measured by linearizedmagnetometers were expressed as a function of end-tidalPCO2(PETCO2). The changes inend-expiratory and end-inspiratory volumes of the chest wall(Vcw,E and Vcw,I,respectively) were calculated as the sum of the respectiverib cage and abdominal volumes. The magnetometer coils were placed atthe level of the nipples and 1-2 cm above the umbilicus andcalibrated during quiet breathing against theVT measured from apneumotachograph. TheVrc,E/PETCO2 slope was quite variable among subjects. It was significantly positive (P < 0.05) in fivesubjects, significantly negative in four subjects(P < 0.05), and not different fromzero in the remaining two subjects. TheVab,E/PETCO2slope was significantly negative in all subjects(P < 0.05) with a much smallerintersubject variation, probably suggesting a relatively more uniformrecruitment of abdominal expiratory muscles and a variable recruitmentof rib cage muscles during CO2rebreathing in different subjects. As a group, the meanVrc,E/PETCO2,Vab,E/PETCO2, andVcw,E/PETCO2slopes were 0.010 ± 0.034, 0.030 ± 0.007, and0.020 ± 0.032 l / Torr, respectively;only theVab,E/PETCO2 slope was significantly different from zero. More interestingly, theindividualVT/PETCO2slope was negatively associated with theVrc,E/PETCO2(r = 0.68,P = 0.021) and Vcw,E/PETCO2slopes (r = 0.63,P = 0.037) but was not associated withtheVab,E/PETCO2slope (r = 0.40, P = 0.223). There was no correlation oftheVrc,E/PETCO2 andVcw,E/PETCO2slopes with age, body size, forced expiratory volume in 1 s, orexpiratory time. The groupVab,I/PETCO2 slope (0.004 ± 0.014 l / Torr) was not significantlydifferent from zero despite theVT nearly being tripled at theend of CO2 rebreathing. Inconclusion, the individual VTresponse to CO2, althoughindependent of Vab,E, is a function ofVrc,E to the extent that as theVrc,E/PETCO2slope increases (more positive) among subjects, theVT response toCO2 decreases. These results maybe explained on the basis of the respiratory muscle actions andinteractions on the rib cage.

  相似文献   

6.
Isono, Shiroh, Thom R. Feroah, Eric A. Hajduk, Rollin Brant,William A. Whitelaw, and John E. Remmers. Interaction ofcross-sectional area, driving pressure, and airflow of passive velopharynx. J. Appl. Physiol. 83(3):851-859, 1997.Previous studies have shown that, when thepharyngeal muscles are relaxed, the velopharynx is a highly compliantsegment of the pharynx. Thus, under these circumstances,cross-sectional area of the velopharynx (AVP), drivingpressure across the velopharynx (P), and inspiratory airflow(I) willbe mutually interdependent variables. The purpose of the presentinvestigation was to describe the interrelation among these threevariables during inspiration. We studied 15 sleeping patients withobstructive sleep apnea/hypopnea when the pharyngeal muscles wererendered hypotonic by applying continuous positive airway pressure tothe nasal airway.AVP, determined by endoscopic imaging, was significantly greater at onset ofI limitationthan at minimum oropharyngeal pressure(P < 0.01). Snoring was neverobserved duringIlimitation. In a subgroup of six patients, values for P,I, andAVP were obtainedat 0.1-s intervals at various levels of mask pressure. For these sixpatients, the mathematical expressionI = 0.657(AVP/Amax) · P0.332,where Amax ismaximal AVP,described the relationship among the three variables(R2 = 0.962) forflow-limited and non-flow-limited inspirations. The impedance of thepassive velopharynx, defined asP0.33/,was inversely related toAVP and increaseddramatically when AVP was <0.3cm2. In summary, we observed aprogressive decrease inAVP during flow-limited inspiration in patients with obstructive sleep apnea. Thisconstriction of the velopharynx contributes to an increase invelopharyngeal impedance that, in turn, counterbalances the increase inP during flow limitation.

  相似文献   

7.
Chiang, Chi-Huei, Kang Hsu, Horng-Chin Yan, Horng-Jyh Harn,and Deh-Ming Chang.PGE1, dexamethasone,U-74389G, or Bt2-cAMP as anadditive to promote protection by UW solution in I/R injury. J. Appl. Physiol. 83(2): 583-590, 1997.A method to reduce ischemia-reperfusion (I/R) injury can be animportant criterion to improve the preservation solution. AlthoughUniversity of Wisconsin solution (UW) works as a lung preservationsolution, its attenuation effect on I/R injury has not beeninvestigated. We attempted to determine whether, by adding variousprotective agents, modified UW solutions will enhance the I/Rattenuation by UW. We examined the I/R injury in an isolated rat lungmodel. Various solutions, e.g., physiological salt solution (PSS), UW,and modified UW solutions containing various protective agents such asprostaglandin E1, dexamethasone, U-74389G, or dibutyryl adenosine 3,5-cyclic monophosphatewere perfused individually to evaluate the I/R injury. Isolated rat lung experiments, with ischemia for 45 min, then reperfusion for 60 min, were conducted in a closed circulating system.Hemodynamic changes, lung weight gain (LWG), capillary filtrationcoefficient (Kfc), proteincontent of lavage fluid, concentration of cytokines, and lunghistopathology were analyzed. Results showed that the acute I/R lunginjury with immediate permeability pulmonary edema was associated withan increase in tumor necrosis factor- (TNF-) production. A significant correlation existed betweenTNF- and Kfc(r = 0.8, P < 0.0001) and TNF- and LWG(r = 0.9, P < 0.0001), indicatingthat TNF- is an important cytokine modulating early I/R injury.Significantly lower levels ofKfc, LWG,TNF-, and protein concentration of lung lavage(P < 0.05) were found in theUW-perfused group than in the control group perfused with PSS. ModifiedUW promoted the protective effect of UW to further decreaseKfc, LWG, andTNF- (P < 0.05).Histopathological observations also substantiated this evidence. In theUW+U-74389G group, bronchial alveolar lavage fluid contained lowestprotein concentration. We conclude that the UW solution attenuates I/Rinjury of rat lung and that the modified UW solutions further enhancethe effect of UW in reducing I/R injury. Among modified solutions,UW+U-74389G is the best. Further investigation of the improved effectsof the modified UW solutions would be beneficial in lungtransplantation.

  相似文献   

8.
Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock   总被引:1,自引:0,他引:1  
Sato, Yoji, Max Harry Weil, Wanchun Tang, Shijie Sun,Jianlin Xie, Joe Bisera, and Hidehiro Hosaka. EsophagealPCO2 as a monitor of perfusionfailure during hemorrhagic shock. J. Appl.Physiol. 82(2): 558-562, 1997.Measurement ofgastric wall PCO2(PgCO2) bytonometric method has emerged as an attractive option for estimatingvisceral perfusion during circulatory shock. However, gastric acidsecretion obfuscates the tonometric measurement. We, therefore,investigated the option of measuringPCO2 in the esophagus to minimizethese restraints. Hemorrhagic shock was induced in five Sprague-Dawleyrats, and five rats served as sham controls.PgCO2 wasmeasured with an ion-sensitive field effect transistor that wassurgically implanted into the gastric wall. Esophageal luminalPCO2(PeCO2) wasmeasured by a second ion-sensitive field effect transistor sensor.During hemorrhagic shock, mean aortic pressure declined from 150 to 50 mmHg. Gastric blood flow decreased from 58 to 12 ml · min1 · 100 g1 (21% of preshock) andesophageal blood flow from 44 to 7 ml · min1 · 100 g1 (16% of preshock).PgCO2simultaneously increased from 47 to 116 Torr andPeCO2 from 47 to 127 Torr. The increases inPgCO2 werehighly correlated with increases inPeCO2(r = 0.90). Esophageal tonometry may,therefore, serve as a practical alternative to gastric tonometry.

  相似文献   

9.
The purpose ofthis study was to examine the bioenergetics and regulation ofO2 uptake(O2) and force productionin contracting muscle when blood flow was moderately reduced during asteady-state contractile period. Canine gastrocnemius muscle(n = 5) was isolated, and 3-minstimulation periods of isometric, tetanic contractions were elicitedsequentially at rates of 0.25, 0.33, and 0.5 contractions/s (Hz)immediately followed by a reduction of blood flow [ischemic (I)condition] to 46 ± 3% of the value obtained at 0.5 Hz with normal blood flow. TheO2 of thecontracting muscle was significantly (P < 0.05) reduced during the Icondition [6.5 ± 0.8 (SE) ml · 100 g1 · min1]compared with the same stimulation frequency with normal flow (11.2 ± 1.5 ml · 100 g1 · min1),as was the tension-time index (79 ± 12 vs. 123 ± 22 N · g1 · min1,respectively). The ratio ofO2 to tension-time indexremained constant throughout all contraction periods. Musclephosphocreatine concentration, ATP concentration, and lactate effluxwere not significantly different during the I condition compared withthe 0.5-Hz condition with normal blood flow. However, at comparable rates of O2 andtension-time index, muscle phosphocreatine concentration and ATPconcentration were significantly less during the I condition comparedwith normal-flow conditions. These results demonstrate that, in thishighly oxidative muscle, the normal balance ofO2 supply to force output wasmaintained during moderate ischemia by downregulation of forceproduction. In addition,1) the minimal disruption inintracellular homeostasis after the initiation of ischemia waslikely a result of steady-state metabolic conditions having alreadybeen activated, and 2) thedifference in intracellular conditions at comparable rates ofO2 and tension-time index between the normal flow and I condition may have been due to altered intracellular O2 tension.

  相似文献   

10.
Te Nijenhuis, Francis C. A. M., Lydia Lin, Gerko H. Moens,Adrian Versprille, and Robert E. Forster. Rate of uptake of CO byhemoglobin in pig erythrocytes as a function ofPO2. J. Appl.Physiol. 81(4): 1544-1549, 1996.This study wasinitiated to obtain data on the rate of carbon monoxide (CO) uptake(CO) by hemoglobin in pigerythrocytes to derive, in a later study, the pulmonary capillary bloodvolume (Qc) in pigs from the Roughton-Forster relationship. Blood fromfive different female pigs was used. TheCO, the milliliters of CO takenup by 1 ml of whole blood per minute per Torr CO tension, wasdetermined on each blood sample with a continuous-flow rapid-mixingapparatus and double-beam spectrophotometry at 37°C and pH 7.4 atfour or five different PO2 values.Because the individual regression lines of CO vs.PO2 were not significantly different,a common regression equation was calculated:1/CO = 0.0084 PO2 + 0.63. The slope of thisregression line is significantly steeper than the reported slopes ofthe regression lines for human and dog erythrocytes measured under thesame conditions. Our results revealed that calculation ofQc in pigs by using CO valuesfor human or dog erythrocytes would result in an underestimation of 51 and 50%, respectively.

  相似文献   

11.
Zschauer, A. O. A., M. W. Sielczak, D. A. S. Smith, and A. Wanner. Norepinephrine-induced contraction of isolated rabbit bronchial artery: role of 1-and 2-adrenoceptor activation. J. Appl. Physiol. 82(6):1918-1925, 1997.The contractile effect of norepinephrine (NE) onisolated rabbit bronchial artery rings (150-300 µm in diameter)and the role of 1- and2-adrenoceptors (AR) on smoothmuscle and endothelium were studied. In intact arteries, NE increasedtension in a dose-dependent manner, and the sensitivity for NE wasfurther increased in the absence of endothelium. In intact but not inendothelium-denuded arteries, the response to NE was increased in thepresence of both indomethacin (Indo; cyclooxygenase inhibitor) andNG-nitro-L-argininemethyl ester [L-NAME;nitric oxide (NO) synthase inhibitor], indicating that twoendothelium-derived factors, NO and a prostanoid, modulate theNE-induced contraction. The1-AR antagonist prazosinshifted the NE dose-response curve to the right, and phenylephrine(1-AR agonist) induced adose-dependent contraction that was potentiated byL-NAME or removal of theendothelium. The sensitivity to NE was increased slightly by the2-AR antagonists yohimbine andidazoxan, and this effect was abolished by Indo or removal of theendothelium. Similarly, contractions induced by UK-14304(2-AR agonist) were potentiatedby Indo or removal of the endothelium. These results suggest thatNE-induced contraction is mediated through activation of1- and2-ARs on both smooth muscle andendothelium. Activation of the1- and2-ARs on the smooth musclecauses contraction, whereas activation of the endothelial 1- and2-ARs induces relaxationthrough release of NO (1-ARs) and a prostanoid (2-ARs).

  相似文献   

12.
Parker, James C., Chris B. Cave, Jeffrey L. Ardell, CharlesR. Hamm, and Susan G. Williams. Vascular treestructure affects lung blood flow heterogeneity simulated in threedimensions. J. Appl. Physiol. 83(4):1370-1382, 1997.Pulmonary arterial tree structures related toblood flow heterogeneity were simulated by using a symmetrical,bifurcating model in three-dimensional space. The branch angle (),daughter-parent length ratio(rL), branchrotation angle (), and branch fraction of parent flow () for asingle bifurcation were defined and repeated sequentially through 11 generations. With  fixed at 90°, tree structures were generatedwith  between 60 and 90°,rL between 0.65 and 0.85, and an initial segment length of 5.6 cm and sectioned into1-cm3 samples for analysis. Bloodflow relative dispersions (RD%) between 52 and 42% and fractaldimensions (Ds)between 1.20 and 1.15 in 1-cm3samples were observed even with equal branch flows. When  0.5, RD% increased, butDs eitherdecreased with gravity bias of higher branch flows or increased withrandom assignment of higher flows. Blood flow gradients along gravityand centripetal vectors increased with biased flow assignment of higherflows, and blood flows correlated negatively with distance only when   0.5. Thus a recursive branching vascular tree structuresimulated Ds andRD% values for blood flow heterogeneity similar to those observedexperimentally in the pulmonary circulation due to differences in thenumber of terminal arterioles per1-cm3 sample, but blood flowgradients and a negative correlation of flows with distance requiredunequal partitioning of blood flows at branchpoints.

  相似文献   

13.
Detection of expiratory flow limitation during exercise in COPD patients   总被引:7,自引:0,他引:7  
Koulouris, Nickolaos G., Ioanna Dimopoulou, PäiviValta, Richard Finkelstein, Manuel G. Cosio, and J. Milic-Emili.Detection of expiratory flow limitation during exercise in COPDpatients. J. Appl. Physiol. 82(3):723-731, 1997.The negative expiratory pressure (NEP) method wasused to detect expiratory flow limitation at rest and at differentexercise levels in 4 normal subjects and 14 patients with chronicobstructive pulmonary disease (COPD). This method does not requireperformance of forced expirations, nor does it require use of bodyplethysmography. It consists in applying negative pressure (5cmH2O) at the mouth during early expiration and comparing the flow-volume curve of the ensuing expiration with that of the preceding control breath. Subjects in whomapplication of NEP does not elicit an increase in flow during part orall of the tidal expiration are considered flow limited. The fournormal subjects were not flow limited up to 90% of maximal exercisepower output(max).Five COPD patients were flow limited at rest, 9 were flow limited atone-third max, and 12 were flow limited at two-thirdsmax. Whereasin all patients who were flow limited at rest the maximalO2 uptake was below the normallimits, this was not the case in most of the other patients. Inconclusion, NEP provides a rapid and reliable method to detectexpiratory flow limitation at rest and during exercise.

  相似文献   

14.
Langsetmo, I., G. E. Weigle, M. R. Fedde, H. H. Erickson, T. J. Barstow, and D. C. Poole.O2 kinetics in thehorse during moderate and heavy exercise. J. Appl.Physiol. 83(4): 1235-1241, 1997.The horse is asuperb athlete, achieving a maximalO2 uptake (~160ml · min1 · kg1)approaching twice that of the fittest humans. Although equine O2 uptake(O2) kinetics arereportedly fast, they have not been precisely characterized, nor hastheir exercise intensity dependence been elucidated. To addressthese issues, adult male horses underwent incremental treadmill testingto determine their lactate threshold (Tlac) and peakO2(O2 peak),and kinetic features of their O2 response to"square-wave" work forcings were resolved using exercisetransitions from 3 m/s to abelow-Tlac speed of 7 m/s or anabove-Tlac speed of 12.3 ± 0.7 m/s (i.e., between Tlac and O2 peak) sustainedfor 6 min. O2 andCO2 output were measured using anopen-flow system: pulmonary artery temperature was monitored, and mixedvenous blood was sampled for plasma lactate.O2 kinetics at work levelsbelow Tlac were well fit by atwo-phase exponential model, with a phase2 time constant(1 = 10.0 ± 0.9 s) thatfollowed a time delay (TD1 = 18.9 ± 1.9 s). TD1 was similar tothat found in humans performing leg cycling exercise, but the timeconstant was substantially faster. For speeds aboveTlac,TD1 was unchanged (20.3 ± 1.2 s); however, the phase 2 time constantwas significantly slower (1 = 20.7 ± 3.4 s, P < 0.05) than for exercise belowTlac. Furthermore, in four of fivehorses, a secondary, delayed increase inO2 became evident135.7 ± 28.5 s after the exercise transition. This "slowcomponent" accounted for ~12% (5.8 ± 2.7 l/min) of the netincrease in exercise O2. Weconclude that, at exercise intensities below and aboveTlac, qualitative features ofO2 kinetics in the horseare similar to those in humans. However, at speeds belowTlac the fast component of theresponse is more rapid than that reported for humans, likely reflectingdifferent energetics of O2utilization within equine muscle fibers.

  相似文献   

15.
Tipton, Charles M., and Lisa A. Sebastian. Dobutamineas a countermeasure for reduced exercise performance of rats exposed tosimulated microgravity. J. Appl.Physiol. 82(5): 1607-1615, 1997.Post-spaceflightresults and findings from humans and rodents after conditions of bedrest or simulated microgravity indicate maximum exercise performance issignificantly compromised. However, the chronic administration ofdobutamine (a synthetic adrenomimetic) to humans in relevantexperiments improves exercise performance by mechanisms that preventthe decline in peak O2 consumption (O2 peak) and reducethe concentration of lactic acid measured in the blood. Althoughdobutamine restores maximumO2values in animals participating in simulated microgravitystudies, it is unknown whether injections of this1-,1-, and2-adrenoceptor agonist in ratswill enhance exercise performance. To investigate this, adult male ratswere assigned to three experimental groups: caged control receivingsaline; head-down, tail-suspended (HDS) receiving saline (HDS-S); andan HDS group receiving dobutamine hydrochloride injections (1.8 mg/kgtwice daily per rat). Treadmill tests were performed before suspension,at 14 days, and after 21 days.O2 peak, run time,and the rate of rise in colonic temperature (heating index) wereevaluated after 14 days, whereas at 21 days, hemodynamic responses(heart rate, systolic blood pressure, and double product) weredetermined during submaximal exercise with blood pH, blood gases, andlactic acid concentration values obtained during maximal exercise. Incontrast to the results for the HDS-S rats, dobutamine administrationdid restore O2 peak and "normalized" lactic acid concentrations during maximalexercise. However, daily injections were unable to enhance exerciseperformance aspects associated with treadmill run time, the mechanicalefficiency of running, the heating index, or the retention of muscleand body mass. These simulated microgravity findings suggest that dobutamine's potential value as a countermeasure for postflight maximal performance or for egress emergencies is limited and that othercountermeasures must be considered.

  相似文献   

16.
The effects ofboth recombinant rat tumor necrosis factor- (TNF-) and ananti-TNF- antibody were studied in isolated buffer-perfused ratlungs subjected to either 45 min of nonventilated[ischemia-reperfusion (I/R)] or air-ventilated(/R) ischemia followed by 90 min of reperfusion and ventilation. In the I/R group, the vascularpermeability, as measured by the filtration coefficient(Kfc),increased three- and fivefold above baseline after 30 and 90 min ofreperfusion, respectively (P < 0.001). Over the same time intervals, theKfc for the/R group increased five- and tenfold above baseline values, respectively (P < 0.001).TNF- measured in the perfusates of both ischemic modelssignificantly increased after 30 min of reperfusion. Recombinant ratTNF- (50,000 U), placed into perfusate after baseline measurements,produced no measurable change in microvascular permeability in controllungs perfused over the same time period (135 min), but I/R injury wassignificantly enhanced in the presence of TNF-. An anti-TNF-antibody (10 mg/rat) injected intraperitoneally into rats 2 h beforethe lung was isolated prevented the microvascular damage in lungsexposed to both I/R and /R (P < 0.001). These results indicatethat TNF- is an essential component at the cascade of events thatcause lung endothelial injury in short-term I/R and/R models of lung ischemia.

  相似文献   

17.
Hepple, R. T., S. L. M. Mackinnon, J. M. Goodman, S. G. Thomas, and M. J. Plyley. Resistance and aerobic training in oldermen: effects onO2 peak and thecapillary supply to skeletal muscle. J. Appl.Physiol. 82(4): 1305-1310, 1997.Both aerobic training (AT) and resistance training (RT) may increase aerobic power(O2 peak) in theolder population; however, the role of changes in the capillary supplyin this response has not been evaluated. Twenty healthymen (age 65-74 yr) engaged in either 9 wk of lower body RTfollowed by 9 wk of AT on a cycle ergometer (RTAT group) or 18 wk of AT on a cycle ergometer (ATAT group). RT was performedthree times per week and consisted of three sets of four exercises at6-12 repetitions maximum. AT was performed threetimes per week for 30 min at 60-70% heart ratereserve. O2 peak was increasedafter both RT and AT (P < 0.05).Biopsies (vastus lateralis) revealed that the number of capillaries per fiber perimeter length was increased after both AT and RT(P < 0.05), paralleling the changesin O2 peak, whereascapillary density was increased only after AT(P < 0.01). These results, and thefinding of a significant correlation between the change in capillarysupply and O2 peak(r = 0.52), suggest the possibility that similar mechanisms may be involved in the increase ofO2 peak afterhigh-intensity RT and AT in the older population.

  相似文献   

18.
Frame, Mary D. S., and Ingrid H. Sarelius. Endothelialcell dilatory pathways link flow and wall shear stress in an intactarteriolar network. J. Appl. Physiol.81(5): 2105-2114, 1996.Our purpose was to determine whether theendothelial cell-dependent dilatory pathways contribute to theregulation of flow distribution in an intact arteriolar network. Cellflow, wall shear stress (T),diameter, and bifurcation angle were determined for four sequentialbranches of a transverse arteriole in the superfused cremaster muscleof pentobaribtal sodium (Nembutal, 70 mg/kg)-anesthetized hamsters(n = 51). Control cell flow wassignificantly greater into upstream than into downstream branches[1,561 ± 315 vs. 971 ± 200 (SE) cells/s,n = 12]. Tissue exposure to 50 µMN-nitro-L-arginine + 50 µM indomethacin (L-NNA + Indo) produced arteriolar constriction of 14 ± 4% and decreasedflow into the transverse arteriole. More of the available cell flow wasdiverted to downstream branches, yet flow distribution remainedunequal. Control T was higherupstream than downstream (31.3 ± 6.8 vs. 9.8 ± 1.5 dyn/cm2).L-NNA + Indo decreasedT upstream and increasedT downstream to become equal inall branches, in contrast to flow. To determine whether constriction ingeneral induced the same changes, 5%O2 (8 ± 4% constriction) or109 M norepinephrine (NE;4 ± 3% constriction) was added to the tissue (n = 7). WithO2, flow was redistributed tobecome equal into each branch. With NE, flow decreased progressivelymore into the first three branches. The changes in flow distributionwere thus predictable and dependent on the agonist. WithO2 or NE, the spatial changes inflow were mirrored by spatial changes inT. Changes in diameter and incell flux were not related forL-NNA + Indo (r = 0.45),O2(r = 0.07), or NE(r = 0.36). For all agonists, when thebifurcation angle increased, cell flow to the branch decreasedsignificantly, whereas if the angle decreased, flow was relativelypreserved; thus active changes in bifurcation angle may influence redcell distribution at arteriolar bifurcations. Thus, when theendothelial cell dilatory pathways were blocked, the changes in flowand in T were uncoupled; yet when they were intact, flowand T changed together.

  相似文献   

19.
George, Kelley. Dynamic resistance exercise and restingblood pressure in adults: a meta-analysis. J. Appl.Physiol. 82(5): 1559-1565, 1997.With the use ofthe meta-analytic approach, the purpose of this study was to examinethe effects of dynamic resistance exercise, i.e., weight training, onresting systolic and diastolic blood pressure in adults. A total ofnine studies consisting of 259 subjects (144 exercise, 115 control) and18 groups (9 exercise, 9 control) were included in this analysis. Withthe use of the bootstrap technique (10,000 samples), significant treatment effect(3)reductions were found across all designs and categories for bothsystolic and diastolic blood pressure [systolic, mean ± SD = 4.55 ± 1.75 mmHg, 95% confidence interval (CI) = 1.56 to 8.56; diastolic, mean ± SD = 3.79 + 1.12 mmHg, 95% confidence interval CI = 1.89 to6.33]. 3 changescorresponded with relative decreases of ~3 and 4% in restingsystolic and diastolic blood pressure, respectively. Inconclusion, meta-analytic review of included studies suggests thatdynamic resistance exercise reduces resting systolic and diastolicblood pressure in adults. However, it is premature to form strongconclusions regarding the effects of dynamic resistance exercise onresting blood pressure. A need exists for additional, well-designedstudies on this topic before a recommendation can be made regarding theefficacy of dynamic resistance exercise as a nonpharmacological therapyfor reducing resting blood pressure in adults, especially inhypertensive adults.

  相似文献   

20.
Klokker, M., N. H. Secher, P. Madsen, M. Pedersen, and B. K. Pedersen. Adrenergic 1-and 1+2-receptor blockade suppress the natural killer cell response to head-up tilt in humans. J. Appl. Physiol. 83(5):1492-1498, 1997.To evaluate stress-induced changes in bloodleukocytes with emphasis on the natural killer (NK) cells, eight malevolunteers were followed during three trials of head-up tilt withadrenergic 1- (metoprolol) and1+2- (propranolol) blockade andwith saline (control) infusions. The 1- and1+2-receptor blockade did notaffect the appearance of presyncopal symptoms, but the head-up tiltinduced a transient lymphocytosis that was abolished by1+2-receptor blockade but notby 1-receptor blockade. Head-uptilt also resulted in delayed neutrophilia, which was insensitive to-receptor blockade. Lymphocyte subset analysis revealed that thehead-up tilt resulted in a twofold increase in the percentage andabsolute number of CD3/CD16+andCD3/CD56+NK cells in peripheral blood and that this increase was partially blocked by metoprolol and abolished by propranolol. The NKcell activity on a per NK cell basis did not change during head-up tilt, indicating that the cytotoxic capability of NK cells recruited tocirculation is unchanged. The data suggest that the head-up tilt-induced lymphocytosis was due mainly toCD16+ andCD56+ NK cells and that theirrecruitment to the blood was inhibited by1- and especially1+2-receptor blockade. Thusstress-induced recruitment of lymphocytes, and of NK cells inparticular, is mediated by epinephrine through activation of-receptors on the lymphocytes.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号