首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The rat hypothalamus was studied at the light microscopic level with the use of single and double immunocytochemical staining methods. It was shown that the rat supraoptic and paraventricular hypothalamic nuclei, and their accessory neurosecretory nuclei, do not contain magnocellular somatostatin neurons. The distribution of the hypothalamic parvocellular somatostatin cells is described. The parvocellular component of the rat hypothalamic paraventricular nucleus is, at least partly, composed of somatostatin cells: they form a fairly well circumscribed periventricular cell mass. The rat suprachiasmatic nuclei contain separate somatostatin neurons and vasopressin neurons. Scattered somatostatin cells are present in the entire arcuate nucleus. In addition to the periventricular somatostatin cells located in the preopticanterior hypothalamic area and in the arcuate nucleus, the rat hypothalamus also contains numerous scattered somatostatin cells located distant from the third ventricle.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

2.
Summary The catecholaminergic innervation of thyrotropin-releasing hormone (TRH) neurons was examined by use of a combined method of 5-hydroxydopamine (5-OHDA) uptake or autoradiography after intraventricular injection of 3H-noradrenaline (3H-NA) and immunocytochemistry for TRH in the same tissue sections at the electron-microscopic level.TRH-like immunoreactive nerve cell bodies were distributed abundantly in the parvocellular part of the paraventricular nucleus (PVN), in the suprachiasmatic preoptic nucleus and in the dorsomedial nucleus of the rat hypothalamus. In the PVN, a large number of immunonegative axon terminals were found to make synaptic contact with TRH-like immunoreactive cell bodies and fibers. In the combined autoradiography or 5-OHDA labeling with immunocytochemistry, axon terminals labeled with 3H-NA or 5-OHDA were found to form synaptic contacts with the TRH immunoreactive nerve cell bodies and fibers. These findings suggest that catecholamine-containing neurons, probably noradrenergic, may innervate TRH neurons to regulate TRH secretion via synapses with other unknown neurons in the rat PVN.This study was supported by grants from the Ministry of Education, Science and Culture, Japan  相似文献   

3.
Synapses between neurons with corticotropin-releasing-factor-(CRF)-like immunoreactivities and other immunonegative neurons in the hypothalamus of colchicine-treated rats, especially in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) were observed by immunocytochemistry using CRF antiserum. The immunoreactive nerve cell bodies and fibers were numerous in both the PVN and the SON. The CRF-containing neurons had synaptic contacts with immunonegative axon terminals containing a large number of clear synaptic vesicles alone or combined with a few dense-cored vesicles. We also found CRF-like immunoreactive axon terminals making synaptic contacts with other immunonegative neuronal cell bodies and fibers. And since some postsynaptic immunonegative neurons contained many large neurosecretory granules, they are considered to be magnocellular neurosecretory cells. These findings suggest that CRF functions as a neurotransmitter and/or modulator in addition to its function as a hormone.  相似文献   

4.
Previous report from our laboratory showed that morphine produces a stimulatory effect of hypothalamic noradrenaline (NA) turnover concurrently with enhanced pituitary-adrenal response after its acute injection and during withdrawal. In the present work we have studied the effects of acute and chronic administration of the kappa agonist U-50,488H as well as the influence of U-50,488H withdrawal on the activity of hypothalamic NA and dopamine (DA) neurons and on the activity of hypothalamic-pituitary-adrenal (HPA) axis. A single dose of U-50,488H (15 mg/kg i.p.) significantly increased hypothalamic NA and decreased DA turnover at the time of an enhanced corticosterone release. Rats rendered tolerant to the kappa agonist by administration of U-50,488H twice a day for 4 days showed no changes in corticosterone secretion. Additionally, a decrease in both hypothalamic MHPG (the cerebral NA metabolite) production and NA turnover was observed, whereas DOPAC concentration and DA turnover were enhanced, which indicate the development of tolerance towards the neuronal and endocrine actions of U-50,488H. After naloxone (3 mg/kg s.c.) administration to U-50,488H-tolerant rats, we found neither behavioural signs of physical dependence nor changes in hypothalamic catecholaminergic neurotransmission. In addition, corticosterone secretion was not altered in U-50,488H withdrawn rats. Present data clearly indicate that tolerance develops towards the NA turnover accelerating and DA turnover decreasing effect of U-50,488H. Importantly and by contrast to mu agonists, present results demonstrate that U-50,488H withdrawal produce no changes in hypothalamic catecholamines turnover or in corticosterone release (an index of the hypothalamus-pituitary-adrenal activity), which indicate the absence of neuroendocrine dependence on the kappa agonist. As has been proposed, this would suggest that the mu and the kappa receptor be regulated through different cellular mechanisms, as kappa agonists have a lower proclivity to induce dependence.  相似文献   

5.
Summary In the hypothalamus of the adult domestic mallard, small to medium-sized perikarya are stained specifically with rabbit antiserum against cyclic somatostatin (PAP technique of Sternberger). The somatostatin-immunoreactive material is located in neurons different from those containing immunoreactive LHRH, vasotocin or mesotocin. Somatostatin-containing perikarya are observed 1) in a chain-like arrangement extending from the area of the median division of the supraoptic nucleus to the caudal end of the paraventricular nucleus; 2) as single cells in the preoptic region; and 3) as a conspicuous formation in the optic tract division of the supraoptic nucleus. In the rostral portion of the median eminence, somatostatin-immunoreactive axons penetrate into the external zone. Fine accessory fiber bundles project to the neural lobe.  相似文献   

6.
A study was made of the formation of catecholaminergic system in the medial basal hypothalamus of Wistar rat fetuses using histofluorescent method modified by de la Torre. In the periventricular region of 16-day fetuses the cells with green fluorescence characteristic for catecholamines were found. In 18-day fetuses catecholaminergic cells were found in paraventricular, arcuate and dorsomedial hypothalamic nuclei. In all the nuclei studied the number of catecholaminergic fibers and terminals of various size is greatly increased. The data obtained suggest that medial basal hypothalamus of 18-day fetuses has a complex catecholaminergic system.  相似文献   

7.
Summary With the use of immunocytochemistry, it was shown that both the supraoptic and paraventricular hypothalamic nuclei in humans contain at least two different neurophysins. These two human neurophysins are immunologically related to bovine neurophysin I and neurophysin II, respectively. One human neurophysin is associated with vasopressin, the other with oxytocin. Human vasopressin-neurophysin and oxytocin-neurophysin are located separately in two different types of neurons, which correspond respectively to the vasopressinergic and oxytocinergic neurons of both the supraoptic and paraventricular nuclei. The neurophysin of the human vasopressinergic suprachiasmatic neurons appears to be closely related to or identical with neurophysin of the vasopressinergic neurons of the human magnocellular hypothalamic nuclei.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

8.
Summary The human hypothalamic-neurohypophysial hormone-producing nuclei were investigated with the unlabeled antibody peroxidase-antiperoxidase complex (PAP) technique at the light microscopic level. The size, shape and location of the supraoptic, paraventricular, accesssory supraoptic and suprachiasmatic nuclei were determined. It was demonstrated in the human hypothalamus, as well as in the hypothalamus of other mammals, that vasopressin and oxytocin are synthesized in separate neurons. In each of the nuclei of the magnocellular neurosecretory system, the distribution, ratios and structural features of the vasopressinergic and oxytocinergic neurons were determined. It was shown that the human suprachiasmatic nuclei contain numerous neurophysin-vasopressin-producing neurons.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

9.
Summary The immunoreactive CRF-neurons of the rat hypothalamus have been examined immunohistochemically employing anti-rat CRF serum. These neurons are confined to the paraventricular nucleus, dorsomedial-lateral hypothalamic area, and suprachiasmatic nucleus, and are, respectively, also immunoreactive to anti-Met-enk, -alpha-MSH, and -VIP sera. Intraventricular administration of colchicine (50 g/5 l/rat) induces a dramatic enhancement of the immunostainability of the cell somata, and also accelerates the development of immunoreactivity of other stored peptides, especially in the paraventricular nucleus.The CRF-neurons respond to adrenalectomy by showing increased immunoreactivity and an increase in the number of cell bodies; in the dorsomedial-lateral area and suprachiasmatic nucleus, there is also an enhanced immunoreactivity for alpha-MSH and VIP, respectively. CRF-cells in the paraventricular nucleus become markedly hypertrophied, but do not show any enhanced immunoreactivity for Met-enk. Since the axons of the paraventricular neurons run to the median eminence, it is probable that they are involved with the endocrine control of hypophysial ACTH release. It is concluded that the CRF-containing neurons in rat hypothalamus consist of three types which are functionally and morphologically different.  相似文献   

10.
Our immunocytochemical investigation of the magnocellular neuroendocrine cells in the cat hypothalamus reveals a mixture of vasopressin (VP)- and oxytocin (OT)-containing neurons in the supraoptic (NSO), the paraventricular (NPV) and in five accessory nuclei (NAC). We describe the lateral hypothalamic nucleus (NLH), a new accessory nucleus, lying at the junction of the internal capsule and pallidum, and possibly involved in drinking behavior. Previously characterized incompletely in mammals, the four other accessory nuclei consist of the circularis (NC), anterior fornical (NAF), posterior fornical (NPF) and retrochiasmatic (NRC). The two peptidergic cell types, VP and OT, are equally mixed in the NPV and the NAC, but in the NSO VP neurons predominate. The perikarya of these VP and OT neurons do not show distinct morphological differences at the level of light microscopy. The organization of magnocellular neuroscretory neurons in the cat hypothalamus closely resembles that described in other mammals with the exception of the unique presence of the lateral hypothalamic accessory nucleus.  相似文献   

11.
The distribution of delta sleep-inducing peptide immunoreactivity (DSIP-IR) was studied in the rat diencephalon. Varicose nerve fibers exhibiting DSIP-IR were found throughout the mediobasal hypothalamus, most frequently in the hypothalamic arcuate nucleus and in the adjoining median eminence and pituitary stalk. This innervation provides a basis for the involvement of DSIP in neuroendocrine regulation at the hypothalamic level. In the hypothalamus, DSIP-IR innervation was also observed close to the third ventricle and within the mamillary complex. Despite pretreatment with colchicine, no evidence of immunoreactive cell bodies containing DSIP-IR could be found.  相似文献   

12.
Cell bodies of small to moderate-sized neurons in the female rat hypothalamus were stained specifically for somatostatin (SRIF) by means of the unlabeled antibody-peroxidase-antiperoxidase immunocytochemical method. SRIF-positive perikarya were scattered throughout the periventricular nucleus in a limited region extending from the middle of the optic chiasm to the rostral margin of the median eminence. The same neurons were revealed with either rabbit (R) or guinea pig (GP) anti-SRIF antisera. Positive cell bodies were more readily assessed with GP antibodies because nonspecific background staining was much less with these than with R anti-SRIF. Positive perikarya were not observed in other hypothalamic nuclei and ependymal elements were also immunocytochemically negative.  相似文献   

13.
Summary Appearance of immunoreactive corticotropin-releasing factor (CRF)-containing neurons was studied in developing hypothalamus of the rat by use of antisera against rat- and ovine CRF. These neurons were first recognized in the lateral and paraventricular nuclei on days 15.5 and 16.5 of gestation, respectively, when antiserum against rat CRF was employed. Antiserum against ovine CRF revealed the cells two days later exclusively in the latter nucleus. In both nuclei, the neurons increased in number with development. The neurons in the paraventricular nucleus appeared to project their immunoreactive processes to the median eminence via the periventricular and lateral pathways. In the median eminence, the immunoreaction with antiserum to rat CRF was first recognized in its anterior portion in the form of dots on day 16.5 of gestation but as beaded fibers in the external layer on day 17.5; these structures increased in amount with development in rostro-caudal direction. Although antiserum to ovine CRF was less potent in immunostainability than antiserum to rat CRF, it also revealed the beaded fibers in the median eminence on day 17.5 of gestation. Since evidence is available that the paraventricular nucleus is involved in corticotropin release, it is concluded that, in rats, the hypothalamic regulatory mechanism controlling the release of corticotropin initially appears on days 16.5–17.5 of gestation.  相似文献   

14.
Summary The hypothalamus of Japanese quail, Coturnix coturnix japonica, has been studied by means of the peroxidase-antiperoxidase immunocytochemical method, with the use of antibodies to synthetic neurotensin (NT). A number of immunoreactive neuronal perikarya occur in the medial preoptic nucleus of the rostral hypothalamus and a few in the accessory part of paraventricular nucleus and dorsal portion of the infundibular nucleus. Some of them correspond to the parvocellular neurons previously identified tentatively as neurosecretory (Mikami et al. 1975, 1976). Large numbers of immunoreactive neuronal fibers are found in the preoptic area, which extend as a remarkable fiber tract from this area to the ventral septal area and to the subfornical organ. A few immunoreactive fibers also extend ventrocaudally to the infundibular nucleus and to the neural lobe.This investigation was supported by Scientific Research Grants No. 556196 and No. 576176 from the Ministry of Education of Japan to Professor Mikami and Mr. Yamada  相似文献   

15.
Summary This paper deals with the ultrastructure of two types of intranuclear inclusions, microfilamentous spindle-shaped and crystalloid, present in paraventricular nucleus neurons of adult normal rats. These inclusions appear occasionally in some non-secretory neurons of the parvocellular system, but have never been seen in neurosecretory cells of the magnocellular system. The microfilamentous spindle-shaped inclusions show a close spatial relationship with the granulofibrillar body and interchromatin granules.The distribution and functional significance of such structures are discussed in the light of recent ultrastructural and biochemical studies on nuclear inclusions.  相似文献   

16.
Summary Ontogenetic development of GRF-containing neurons in the rat hypothalamus was studied employing antisera which were generated against hpGRF (1–44)NH2 and rhGRF(1–43)OH: anti-hpGRF-C and -rhGRF sera recognize the species-specific C-terminal portions of the peptides, and anti-hpGRF-MC and -N sera recognize hpGRF(27–44)NH2 and the N-terminal portion of hpGRF(1–44)NH2, respectively. The anti-hpGRF-C and-rhGRF sera stained different neuronal cell bodies, which were localized in distinct hypothalamic areas. The former serum did not stain the axonal terminals in the median eminence, but the latter stained them strongly. The antihpGRF-MC and -N sera stained neuronal cell bodies, some of which corresponded to those immunolabelled with antihpGRF-C or -rhGRF serum. The anti-rhGRF serum first demonstrated immunoreactive perikarya in the ventral-lateral border of the arcuate nucleus of 19.5-day-old fetuses that had received an intraventricular colchicine administration 24 h previously. The immunoreactive fibers were recognized first in the external layer of the median eminence of untreated fetuses on day 19.5 of gestation, and then they increased in amount with development. No immunore-active fibers, however, were found in the median eminence of colchicine-treated animals during the fetal period. It is concluded that in rats GRF may be synthesized in the perikarya on day 18.5 of gestation and conveyed to the median eminence without delay via axonal flow.  相似文献   

17.
The localization of GABA-like immunoreactivity in the locus ceruleus of rats was studied by the peroxidase-antiperoxidase (PAP) method using a purified antibody raised against GABA applied to paraffin sections, with counterstaining by cresylecht violet, and to floating sections for preembedding immunoelectron microscopy. A few medium-sized and some small neurons showed GABA-like immunoreactivity in both nuclei and perikarya. The preferential localization of these immunopositive neurons in the marginal parts of the locus ceruleus suggests that they are inhibitory local circuit neurons located between this center and the afferent fiber systems. Some of the immunoreactive neurons displayed homogeneous and heterogeneous "paired cells" patterns. Occurrence of the GABA-GABA interaction is indicated. Immunopositive bouton forms are located close to every positive and negative neuron. Electron microscopy confirms GABA-like immunoreactivity in both medium-sized and small neurons of the locus ceruleus and demonstrates that immunoreactive boutons are axosomatic and axosoma spine symmetric synapses on immunopositive and immunonegative cell bodies. These immunocytochemical results support the existence of inhibitory interneurons in the locus ceruleus.  相似文献   

18.
Immunocytochemical localization of CRF in the ovine hypothalamus   总被引:3,自引:0,他引:3  
A population of neuronal cell bodies and their fiber pathways have been elucidated within the ovine hypothalamus. The immunoreactive neurons were located in the anterior and dorsal hypothalamus interspersed throughout the paraventricular nucleus. These perikarya were only observed when an antiserum that was generated against the C-terminal of CRF was employed. A dense fiber projection traversed the medial-basal hypothalamus and ended within the palisade-contact zone of the median eminence and neural stem. Fibers were revealed by antisera generated against both the N-terminal and the C-terminal of CRF. Antisera pre-absorbed with synthetic CRF failed to yield immunoreactivity.  相似文献   

19.
Summary The distribution of serotonin in the hypothalamus and the mesencephalon of guinea-pigs pretreated with both pargyline and L-tryptophan was investigated immunohistochemically using monoclonal antibodies to 5-HT. 5-HT-positive fibers and varicosities appeared distributed throughout the hypothalamus. Some areas showed a greater density of immunoreactivity: the suprachiasmatic nucleus, the region of the supraoptic crest, the area of the medial forebrain bundle, the ventral part of the nucleus ventromedialis, the median eminence and the ventral part of the mammillary bodies. 5-HT nerve fibers were also scattered in the posterior lobe of the pituitary. An extensive supraependymal plexus of immunoreactive axons was observed in most ventricular regions. No 5-HT positive cell bodies were present in the hypothalamus of the guinea-pig under our experimental conditions, whereas an intense serotonin immunoreactivity was detected in perikarya of the brain stem. 5-HT cell bodies were found predominantly in the raphe region including the nucleus raphe dorsalis and raphe medianus, nucleus interpeduncularis, reticular formation and dorsal area of the medial lemniscus.  相似文献   

20.
A specific rabbit anti-CRF serum and the immunoperoxidase technique were used to show that CRF-containing neurons are mainly distributed in the paraventricular and supraoptic nuclei of the rat hypothalamus. In addition, immunoreactive neurons are scattered in other hypothalamic regions. These neurons are 20--30 micrometers in diameter. From the present and previous investigations it may be concluded that the hypothalamic magnocellular nuclei, i.e., paraventricular and supraoptic, and other hypothalamic accessory nuclei, are the producing sites not only for vasopressin and oxytocin, but also for corticotropin-releasing factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号