首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of ectomycorrhizal colonization, charcoal and CO2 levels on the germination of seeds of Larix kaempferi and Pinus densiflora, and also their subsequent physiological activity and growth. The seeds were sown in brown forest soil or brown forest soil mixed with charcoal, at ambient CO2 (360 μmol mol−1) or elevated CO2 (720 μmol mol−1), with or without ectomycorrhiza. The proportions of both conifer seeds that germinated in forest soil mixed with charcoal were significantly greater than for seeds sown in forest soil grown at each CO2 level (P < 0.05; t-test). However, the ectomycorrhizal colonization rate of each species grown in brown forest soil mixed with charcoal was significantly lower than in forest soil at each CO2 treatment [CO2] (P < 0.01; t-test). The phosphorus concentrations in needles of each seedling colonized with ectomycorrhiza and grown in forest soil were greater than in nonectomycorrhizal seedlings at each CO2 level, especially for L. kaempferi seedlings (P < 0.05; t-test), but the concentrations in seedlings grown in brown forest soil mixed with charcoal were not increased at any CO2 level. Moreover, the maximum net photosynthetic rate of each seedling for light and CO2 saturation (P max) increased when the seedlings were grown with ectomycorrhiza at 720 μmol mol−1 [CO2]. Ectomycorrhizal colonization led to an increase in the stem diameter of each species grown in each soil treatment at each CO2 level. However, charcoal slowed the initial growth of both species of seedling, constraining ectomycorrhizal development. These results indicate that charcoal strongly assists seed germination and physiological activity.  相似文献   

2.
Atmospheric CO2 concentration continues to rise. It is important, therefore, to determine what acclimatory changes will occur within the photosynthetic apparatus of wheat (Triticum aestivum L. cv. Yecora Rojo) grown in a future high-CO2 world at ample and limited soil N contents. Wheat was grown in an open field exposed to the CO2 concentration of ambient air [370 μmol (CO2) mol−1; Control] and air enriched to ∼200 μmol (CO2) mol−1 above ambient using a Free-Air CO2 Enrichment (FACE) apparatus (main plot). A High (35 g m−2) or Low (7 and 1.5 g m−2 for 1996 and 1997, respectfully) level of N was applied to each half of the main CO2 treatment plots (split-plot). Under High-N, FACE reduced stomatal conductance (g s) by 30% at mid-morning (2 h prior to solar noon), 36% at midday (solar noon) and 27% at mid-afternoon (2.5 h after solar noon), whereas under Low-N, g s was reduced by as much as 31% at mid-morning, 44% at midday and 28% at mid-afternoon compared with Control. But, no significant CO2 × N interaction effects occurred. Across seasons and growth stages, daily accumulation of carbon (A′) was 27% greater in FACE than Control. High-N increased A′ by 18% compared with Low-N. In contrast to results for g s, however, significant CO2 × N interaction effects occurred because FACE increased A′ by 30% at High-N, but by only 23% at Low-N. FACE enhanced the seasonal accumulation of carbon (A′′) by 29% during 1996 (moderate N-stress), but by only 21% during 1997 (severe N-stress). These results support the premise that in a future high-CO2 world an acclimatory (down-regulation) response in the photosynthetic apparatus of field-grown wheat is anticipated. They also demonstrate, however, that the stimulatory effect of a rise in atmospheric CO2 on carbon gain in wheat can be maintained if nutrients such as nitrogen are in ample supply. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The influence of toluene concentration on the specific growth rate, cellular yield, specific CO2, and metabolite production by Pseudomonas putida F1 (PpF1) was investigated. Both cellular yield and specific CO2 production remained constant at 1.0 ± 0.1 g biomass dry weight (DW) g−1 toluene and 1.91 ± 0.31 g CO2 g−1 biomass, respectively, under the tested range of concentrations (2–250 mg toluene l−1). The specific growth rate increased up to 70 mg toluene l−1. Further increases in toluene concentration inhibited PpF1 growth, although inhibitory concentrations were far from the application range of biological treatment processes. The specific ATP content increased with toluene concentration up to toluene concentrations of 170 mg l−1. 3-Methyl catechol (3-MC) was never detected in the cultivation medium despite being an intermediary in the TOD pathway. This suggested that the transformation from toluene to 3-MC was the limiting step in the biodegradation process. On the other hand, benzyl alcohol (BA) was produced from toluene in a side chain reaction. This is, to the best of our knowledge, the first reported case of methyl monoxygenation of toluene by PpF1 not harboring the pWW0 TOL plasmid. In addition, the influence of 3-MC, BA, and o-cresol on toluene degradation was investigated respirometrically, showing that toluene-associated respiration was not significantly inhibited in the presence of 10–100 mg l−1 of the above-mentioned compounds.  相似文献   

4.
This study was conducted to determine reciprocal effects of low to high doses of nitrogenous fertilizer (N30, N40, N50, N60 and N70 — 30, 40, 50, 60 and 70 kg ha−1 respectively) and CO2 enriched environment on C and N partitioning in soybean (Glycine max (L.) Merril cv JS-335). Plants were grown from seedling emergence to maturity inside open top chambers under ambient, AC (350±50 mol mol−1) and elevated, EC (600±50 mol mol−1) CO2 and analyzed at seedling, vegetative, flowering, pod setting and maturity stages. Soybean responded to both CO2 enrichment and N supply. Leaves, stem and root reserves at different growth stages were analyzed for total C and N contents. Consistent increase in the C contents of the leaf, stem and root was observed under EC than in AC. N contents in the different plant parts were found to be decreased under EC-grown plants specially at seedling and vegetative stage despite providing N doses to the soil. Significant increase observed for C to N dry mass ratio under EC in the root, stems and leaves at seedling and vegetative stage was decreased in the middle and later growth stages possibly due to combined impact of N doses to the soil and increased N2 fixing activities due to EC conditions. Critical analysis of our findings reveals that the composition and partitioning of C and N of soybean under variable rates of N supply and CO2 enrichment alter according to need under altered metabolic process. These changes eventually may lead to alteration in uptake of not only N but other essential nutrients also under changing atmosphere.  相似文献   

5.
Summary The proliferation and survival of avocado nodal cultures of juvenile origin were affected by the form and concentration of nitrogen. Optimum growth was achieved on modified Murashige and Skoog medium containing 67% KNO3 and 33% NH4NO3 with total N of 40 mM supplemented with 100 mg l−1 myo-inositol, 1 mg l−1 thiamine HCl, 30 g l−1 sucrose, and 4.44 μM BA with a 16-h photoperiod (120–150 μmol m−2 s−1). Proliferating shoots and plantlets were photosynthetically active. Better shoot growth and accumulation of higher biomass occurred in a CO2-enriched environment than under ambient CO2 conditions. CO2 assimilation efficiency, however, was higher under the latter conditions than in a CO2-enhanced environment, e.g., 31±7 and 17±2 μmol CO2 m−2 s−1, respectively. The net CO2 assimilation rates of in vitro grown plantlets were comparable to those of seedlings ex vitro.  相似文献   

6.
The future capacity of forest ecosystems to sequester atmospheric carbon is likely to be influenced by CO2-mediated shifts in nutrient cycling through changes in litter chemistry, and by interactions with pollutants like O3. We evaluated the independent and interactive effects of elevated CO2 (560 μl l−1) and O3 (55 nl l l−1) on leaf litter decomposition in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) at the Aspen free air CO2 enrichment (FACE) site (Wisconsin, USA). Fumigation treatments consisted of replicated ambient, +CO2, +O3, and +CO2 + O3 FACE rings. We followed mass loss and litter chemistry over 23 months, using reciprocally transplanted litterbags to separate substrate quality from environment effects. Aspen decayed more slowly than birch across all treatment conditions, and changes in decomposition dynamics of both species were driven by shifts in substrate quality rather than by fumigation environment. Aspen litter produced under elevated CO2 decayed more slowly than litter produced under ambient CO2, and this effect was exacerbated by elevated O3. Similarly, birch litter produced under elevated CO2 also decayed more slowly than litter produced under ambient CO2. In contrast to results for aspen, however, elevated O3 accelerated birch decay under ambient CO2, but decelerated decay under enriched CO2. Changes in decomposition rates (k-values) were due to CO2- and O3-mediated shifts in litter quality, particularly levels of carbohydrates, nitrogen, and tannins. These results suggest that in early-successional forests of the future, elevated concentrations of CO2 will likely reduce leaf litter decomposition, although the magnitude of effect will vary among species and in response to interactions with tropospheric O3.  相似文献   

7.
The photosynthetic responses of the tropical tree species Acacia nigrescens Oliv. grown at different atmospheric CO2 concentrations—from sub-ambient to super-ambient—have been studied. Light-saturated rates of net photosynthesis (A sat) in A. nigrescens, measured after 120 days exposure, increased significantly from sub-ambient (196 μL L−1) to current ambient (386 μL L−1) CO2 growth conditions but did not increase any further as [CO2] became super-ambient (597 μL L−1). Examination of photosynthetic CO2 response curves, leaf nitrogen content, and leaf thickness showed that this acclimation was most likely caused by reduction in Rubisco activity and a shift towards ribulose-1,5-bisphosphate regeneration-limited photosynthesis, but not a consequence of changes in mesophyll conductance. Also, measurements of the maximum efficiency of PSII and the carotenoid to chlorophyll ratio of leaves indicated that it was unlikely that the pattern of A sat seen was a consequence of growth [CO2] induced stress. Many of the photosynthetic responses examined were not linear with respect to the concentration of CO2 but could be explained by current models of photosynthesis.  相似文献   

8.
The differences in pigment levels, photosynthetic activity and the chlorophyll fluorescence decrease ratio R Fd (as indicator of photosynthetic rates) of green sun and shade leaves of three broadleaf trees (Platanus acerifolia Willd., Populus alba L., Tilia cordata Mill.) were compared. Sun leaves were characterized by higher levels of total chlorophylls a + b and total carotenoids x + c as well as higher values for the weight ratio chlorophyll (Chl) a/b (sun leaves 3.23–3.45; shade leaves: 2.74–2.81), and lower values for the ratio chlorophylls to carotenoids (a + b)/(x + c) (with 4.44–4.70 in sun leaves and 5.04–5.72 in shade leaves). Sun leaves exhibited higher photosynthetic rates P N on a leaf area basis (mean of 9.1–10.1 μmol CO2 m−2 s−1) and Chl basis, which correlated well with the higher values of stomatal conductance G s (range 105–180 mmol m−2 s−1), as compared to shade leaves (G s range 25–77 mmol m−2 s−1; P N: 3.2–3.7 μmol CO2 m−2 s−1). The higher photosynthetic rates could also be detected via imaging the Chl fluorescence decrease ratio R Fd, which possessed higher values in sun leaves (2.8–3.0) as compared to shade leaves (1.4–1.8). In addition, via R Fd images it was shown that the photosynthetic activity of the leaves of all trees exhibits a large heterogeneity across the leaf area, and in general to a higher extent in sun leaves than in shade leaves.  相似文献   

9.
Despite predictions that both atmospheric CO2 concentrations and air temperature will rise together, very limited data are currently available to assess the possible interactive effects of these two global change factors on temperate forest tree species. Using yellow birch (Betula alleghaniensis) as a model species, we studied how elevated CO2 (800 vs. 400 μl l−1) influences seedling growth and physiological responses to a 5°C increase in summer air temperatures (31/26 vs. 26/21°C day/night), and how both elevated CO2 and air temperature during the growing season influence seedling ability to survive freezing stress during the winter dormant season. Our results show that while increased temperature decreases seedling growth, temperature-induced growth reductions are significantly lower at elevated CO2 concentrations (43% vs. 73%). The amelioration of high-temperature stress was related to CO2-induced reductions in both whole-shoot dark respiration and transpiration. Our results also show that increased summer air temperature, and to a lesser degree CO2 concentration, make dormant winter buds less susceptible to freezing stress. We show the relevance of these results to models used to predict how climate change will influence future forest species distribution and productivity, without considering the direct or interactive effects of CO2. Received: 5 June 1997 / Accepted: 16 December 1997  相似文献   

10.
Impacts of either elevated CO2 or drought stress on plant growth have been studied extensively, but interactive effects of these on plant carbon and nitrogen allocation is inadequately understood yet. In this study the response of the dominant desert shrub, Caragana intermedia Kuanget H.c.Fu, to the interaction of elevated CO2 (700 ± 20 μmol mol−1) and soil drought were determined in two large environmental growth chambers (18 m2). Elevated CO2 increased the allocation of biomass and carbon into roots and the ratio of carbon to nitrogen (C:N) as well as the leaf soluble sugar content, but decreased the allocation of biomass and carbon into leaves, leaf nitrogen and leaf soluble protein concentrations. Elevated CO2 significantly decreased the partitioning of nitrogen into leaves, but increased that into roots, especially under soil drought. Elevated CO2 significantly decreased the carbon isotope discrimination (Δ) in leaves, but increased them in roots, and the ratio of Δ values between root and leaf, indicating an increased allocation into below-ground parts. It is concluded that stimulation of plant growth by CO2 enrichment may be negated under soil drought, and under the future environment, elevated CO2 may partially offset the negative effects of enhanced drought by regulating the partitioning of carbon and nitrogen.  相似文献   

11.
Chaetoceros muelleri (Lemn.) was cultured with nitrite (NO2) or nitrate (NO3) as the sole nitrogen source and aerated with air or with CO2-enriched air. Cells of C. muelleri excreted into the medium nitrite produced by reduction of nitrate when grown with 100 μM NaNO3 as nitrogen source. Accordingly, NO2 concentration reached 10.4 μM after 95 h at the low CO2 condition (aerated with air); while the maximum NO2 concentration was only around 2.0 μM at the high CO2 condition (aerated with 5% CO2 in air), furthermore, after 30 h it decreased to no more than 1.0 μM. NO2 was almost assimilated in 80 h when C. muelleri was cultured at the high CO2 condition with 100 μM NaNO2 as sole nitrogen source. At the high CO2 condition, after 3 h the activity of nitrite reductase was as much as 50% higher than that at the low CO2 condition. It was indicated that enriched CO2 concentration could inhibit nitrite excretion and enhance nitrite assimilation by cells. Therefore, aeration with enriched CO2 might be an effective way to control nitrite content in aquaculture systems.  相似文献   

12.
Five different doses of ultraviolet-B (UV-B) radiation were supplied to tomato (Lycopersicon esculeutum. Mill) with the doubled CO2 concentration (700 μmol · mol−1) in the winter plastic greenhouse. The influences on the seedling growth, fruit quality and yield of tomato were investigated. Results showed that the seedling growth, and the contents of UV absorbing compounds, soluble sugar, organic acid, vitamin C and lycopene of tomato fruits, and yield of tomato increased under doubled CO2 concentration. Under the doubled CO2 concentration the effects of lost doses of UV-B radiation could further promote the effects of doubled CO2 concentration. However, there is no significant increase in yield of tomato. The best dose of UV-B radiation is about 1.163 kJ·m−2. When the dose of UV-B radiation is more than it, the effects of UV-B will be reduced. __________ Translated from Journal of Wuhan Botanical Research, 2006, 24(1): 49–53 [译自: 武汉植物学研究]  相似文献   

13.
Seeds were collected and compared from parent plants of Bromusrubens L. (Poaceae), an exotic Mojave Desert annual grass, grown in ambient (360 μmol mol−1) and elevated (700 μmol mol−1) CO2 to determine if parental CO2 growth conditions affected seed quality. Performance of seeds developed on the above plants was evaluated to determine the influence of parental CO2 growth conditions on germination, growth rate, and leaf production. Seeds of B. rubens developed on parents grown in elevated CO2 had a larger pericarp surface area, higher C:N ratio, and less total mass than ambient-developed seeds. Parental CO2 environment did not have an effect on germination percentage or mean germination time, as determined by radicle emergence. Seedlings from elevated-CO2-developed seeds had a reduced relative growth rate and achieved smaller final mass over the same growth period. Elevated-CO2-developed seeds had smaller seed reserves than ambient seeds, as determined by growing seedlings in sterile media and monitoring senescence. It appears that increased seed C:N ratios associated with plants grown under elevated CO2 may have a major effect on seed quality (morphology, nutrition) and seedling performance (e.g., growth rate and leaf production). Since the invasive success of B. rubens is primarily due to its ability to rapidly germinate, increase leaf area and maintain a relatively high growth rate compared to native annuals and perennial grasses, reductions in seed quality and seedling performance in elevated CO2 may have significant impacts on future community composition in the Mojave Desert. Received: 11 April 1997 / Accepted: 20 November 1997  相似文献   

14.
CO2 efflux from soil and snow surfaces was measured continuously in a Japanese cedar (Cryptomeria japonica D. Don) forest in central Japan using an open dynamic chamber system. The chamber opens and closes automatically and records measurements based on an open-flow dynamic method. Between May and December, mean soil CO2 efflux ranged from 1,529 mg CO2 m−2 h−1 in September to 255 mg CO2 m−2 h−1 in December. The seasonal change in CO2 efflux from the soil paralleled the seasonal pattern of soil temperature. No marked diurnal trends in soil CO2 efflux were observed on days without rainfall, whereas significant pulses in soil CO2 efflux were observed on days with rainfall. In this plantation, soil CO2 efflux frequently responded to rainfall. Measurements of changes from litter-covered soil to snow-covered surfaces revealed that CO2 efflux decreased from values of ca. 250 mg CO2 m−2 h−1 above soil to less than 33 mg CO2 m−2 h−1 above snow. Soil temperature alone explained 66% of the overall variation in soil CO2 efflux, but explained approximately 85% of the variation when data from two anomalous periods were excluded. Moreover, we found a significant correlation between soil CO2 efflux and soil moisture (which explained 44% of the overall variation) using a second-order polynomial function. Our results suggest that the seasonality of CO2 efflux is affected not only by soil temperature and moisture, but also by drying and rewetting cycles and by litterfall pulses.  相似文献   

15.
Yarrowia lipolytica converts methyl ricinoleate to γ-decalactone, a high-value fruity aroma compound. The highest amount of 3-hydroxy-γ-decalactone produced by the yeast (263 mg l-1) occurred by increasing the kLa up to 120 h−1 at atmospheric pressure; above it, its concentration decreased, suggesting a predominance of the activity of 3-hydroxyacyl-CoA dehydrogenase. Cultures were grown under high-pressure, i.e., under increased O2 solubility, but, although growth was accelerated, γ-decalactone production decreased. However, by applying 0.5 MPa during growth and biotransformation gave increased concentrations of dec−2-en-4-olide and dec-3-en-4-olide (70 mg l−1).  相似文献   

16.
Kurasová  I.  Kalina  J.  Štroch  M.  Urban  O.  Špunda  V. 《Photosynthetica》2003,41(2):209-219
The response of barley (Hordeum vulgare L. cv. Akcent) to various photosynthetic photon flux densities (PPFDs) and elevated [CO2] [700 μmol (CO2) mol−1; EC] was studied by gas exchange, chlorophyll (Chl) a fluorescence, and pigment analysis. In comparison with barley grown under ambient [CO2] [350 μmol (CO2) mol−1; AC] the EC acclimation resulted in a decrease in photosynthetic capacity, reduced stomatal conductance, and decreased total Chl content. The extent of acclimation depression of photosynthesis, the most pronounced for the plants grown at 730 μmol m−2 s−1 (PPFD730), may be related to the degree of sink-limitation. The increased non-radiative dissipation of absorbed photon energy for all EC plants corresponded to the higher de-epoxidation state of xanthophylls only for PPFD730 barley. Further, a pronounced decrease in photosystem 2 (PS2) photochemical efficiency (given as FV/FM) for EC plants grown at 730 and 1 200 μmol m−2 s−1 in comparison with AC barley was related to the reduced epoxidation of antheraxanthin and zeaxanthin back to violaxanthin in darkness. Thus the EC conditions sensitise the photosynthetic apparatus of high-irradiance acclimated barley plants (particularly PPFD730) to the photoinactivation of PS2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
This study was conducted to determine effects of nitrogen supply (75 and 150 kg(N) ha−1) and CO2 enrichment on partitioning of macro and micro nutrients in wheat (Triticum aestivum L. cv. HD-2285). Plants were grown from seedling emergence to maturity inside open top chambers under ambient CO2 (CA, 350 ± 50 μmol mol−1) and elevated CO2 (CE, 600 ± 50 μmol mol−1). Leaves, stems and roots of the same physiological age were analyzed for carbon, nitrogen, calcium, copper, iron, zinc and manganese content at 40, 60 and 90 d after germination. C, Cu, Mn and Zn content was higher in the stem, leaves and roots on dry mass basis under CE than CA. However, N and Fe contents decreased in CE grown plants. Ca content was unaffected due to CE and variable N supplies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Summary Explants of sugarcane, a C4 plant, were cultured in vitro for 18d on Floridalite (a solid cube consisting of vermiculite and cellulose fibers) used as supporting material with sugar-free Murashige and Skoog liquid medium with double-strength KH2PO4, MgSO4, FeSO4, and Na2-EDTA in the vessel with enhanced natural ventilation. CO2 concentration in the culture room was kept at 1500 μmol mol−1 (four times the atmospheric CO2 concentration) during the photoperiod. A factorial experiment was designed with two levels of photosynthetic photon flux (PPF) and three levels of N (number of air exchanges of the vessel). The results were compared with those in the control treatment (photomixotrophic culture using sugar-containing agar medium under low PPF and low N). PPF and N showed significant positive effects on the growth of sugarcane plantlets in vitro. In the photoautotrophic (using sugar-free medium) treatments with relatively high PPF (200–400 μmol m−2 s−1) and high N (2–10 h−1), the growth of plantlets was four to seven times greater than that in the control. Also, the culture period for multiplication and rooting was shortened from 30 d in the control to 18 d or less in the photoautotrophic, high PPF, and high N treatments. Use of porous supporting material in photoautotrophic treatments promoted rooting and plantlet growth significantly.  相似文献   

19.
Nutrient resorption from senescing leaves is an important aspect of internal plant nutrient cycling. Global environmental change very likely affects this process. In an 8-month experiment, we investigated the effect of increased nitrogen (N) availability and CO2 concentration on the contribution of leaf N resorption to the internal nitrogen dynamics of the perennial deciduous graminoid Molinia caerulea (L.) Moench. Plants were grown in a factorial combination of two levels of N (65 and 265 N ha−1 year−1) and CO2 (380 and 700 μL L−1) in a greenhouse. Both N and CO2 addition increased the total biomass and the total N pools of mature Molinia plants considerably, without a significant interaction. Nitrogen-resorption efficiency from senescing leaves (% of the mature leaf N pool that is resorbed) was neither affected by the N- nor by the CO2 treatments. When averaged over the treatments, the N-resorption efficiency was 85% ± 1 (SE). The final N concentration in the litter (N-resorption proficiency) was also not affected by the treatments and was on average 3.6 mg N g−1 ± 0.25 (SE). The contribution of resorbed N from senescing leaves to the late seasonal N requirements (seed and stem production and storage of N for next year’s growth) of M. caerulea plants was (negatively) affected by the N treatment only, and no interaction effects with CO2 were found. Resorption from stems and/or direct reserve and seed formation during growth became relatively more important. Thus, internal N cycling processes in Molinia caerulea are only affected when N availability is increased, but not under elevated CO2 concentrations. Under high N conditions, this species shifts from a N recycling strategy to reserve formation during growth.  相似文献   

20.
We conducted a 4-year study of juvenile Pinus ponderosa fine root (≤2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at three CO2 levels (ambient, ambient+175 μmol/mol, ambient+350 μmol/mol) and three N-fertilization levels (0, 10, 20 g m−2 year−1). Length and width of individual roots were measured from minirhizotron video images bimonthly over 4 years starting when the seedlings were 1.5 years old. Neither CO2 nor N-fertilization treatments affected the seasonal patterns of root production or mortality. Yearly values of fine-root length standing crop (m m−2), production (m m−2 year−1), and mortality (m m−2 year−1) were consistently higher in elevated CO2 treatments throughout the study, except for mortality in the first year; however, the only statistically significant CO2 effects were in the fine-root length standing crop (m m−2) in the second and third years, and production and mortality (m m−2 year−1) in the third year. Higher mortality (m m−2 year−1) in elevated CO2 was due to greater standing crop rather than shorter life span, as fine roots lived longer in elevated CO2. No significant N effects were noted for annual cumulative production, cumulative mortality, or mean standing crop. N availability did not significantly affect responses of fine-root standing crop, production, or mortality to elevated CO2. Multi-year studies at all life stages of trees are important to characterize belowground responses to factors such as atmospheric CO2 and N-fertilization. This study showed the potential for juvenile ponderosa pine to increase fine-root C pools and C fluxes through root mortality in response to elevated CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号