首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Divergent conclusions exist as to whether inactive renin is present in nephrectomized rat plasma. A major factor contributing to this conflict may be related to significant changes in the "plasma blank" when trypsin-treated plasma is subjected to angiotensin I (AI) radioimmunoassay (RIA). In normal, but not nephrectomized rat plasma, AI-like substances are present in direct proportion to active renin. These substances are destroyed by trypsin. However, trypsin generates additional AI-like material, in both normal and nephrectomized rat plasma. This material, which is present in proportion to the renin substrate concentration, does not appear to be tetradecapeptide (TDP). In normal plasma, however, exogenous TDP is converted to AI in proportion to the active renin concentration and AI generation from TDP is increased by activation of inactive renin. However, in nephrectomized rat plasma, no AI generation from TDP was evident either before or after trypsin treatment. The coincident tryptic generation of a substance that quenches the levels of AI detected by RIA, combined with significant changes in the levels of endogenous and trypsin generated AI-like substances, may have significant bearing on the measured levels of inactive renin.  相似文献   

2.
In a new method for measurement of inactive rat plasma renin, the trypsin generated angiotensin I immunoreactive material, which was HPLC characterized as similar to tetradecapeptide renin substrate, is removed by a cation exchange resin before the renin incubation step. The method also corrects for trypsin destruction of endogenous angiotensinogen by the addition of exogenous angiotensinogen. When measured with this method inactive renin in rat plasma decreased after nephrectomy and increased after adrenalectomy. This is in accordance with findings in humans. A sexual dimorphism of prorenin (inactive renin) in rat plasma, similar to that reported in humans and mice, was demonstrated. Thus, inactive renin in the rat is no exception among species, and the rat might be a suitable animal model for further studies dealing with the physiology of prorenin in plasma and tissues.  相似文献   

3.
Prorenin determination in rat plasma has been problematic from the outset. Consequently, its existence is questioned by some and its quantity by others, making it difficult for knowledge to advance as to its function relative to the renin system. The present study examines major variables in the determination of rat plasma prorenin and renin, notably different prorenin activation protocols involving blood samples obtained under various conditions from animals under different anesthetics. We found that a trypsin activation step with 5 mg/mL plasma, 60 min at 23 degrees C, followed by a PRA step of 10 min at 37 degrees C, resulted in the highest prorenin estimates, up to approximately 400 ng.mL-1.h-1 in terms of angiotensin I, as compared with published values of 0-190, based on other protocols. These estimates were obtained despite considerable destruction of angiotensinogen (renin substrate) by trypsin. Cryoactivation of prorenin was much less effective than in human plasma but, when followed by trypsin, it facilitated greater activation than with trypsin alone. Comparable fresh and fresh-frozen plasmas had similar prorenin-renin values, but lower values were observed in plasmas that had been repeatedly frozen and thawed. Conscious rats and those anesthetized with Inactin or ether had higher renins and prorenins than those anesthetized with methoxyflurane or halothane. Rats with kidneys in place during blood collection had higher renins (but not prorenins) than those whose kidneys were clamped off, suggesting that last-minute renin release during blood collection had occurred. We conclude that (i) trypsin generates increased renin, or renin-like, activity in plasma, suggesting activation of a precursor; (ii) on this basis, high prorenin levels exist in normal rat plasma; (iii) renin and prorenin levels are variously influenced by different anesthetics and blood handling procedures; (iv) variation in prorenin levels suggests that it is a dynamic (functional?) component of the renin system; (v) prorenin measurements are heavily influenced by methodological variations during the trypsin step or the subsequent PRA step; (vi) using standardized methodology, the rat can serve as a model for investigating the function of prorenin in normotension and hypertension.  相似文献   

4.
We looked for the presence of prorenin in erythrocytes from normal subjects (n = 8), hypertensive patients (n = 8), and pregnant women (n = 8). Angiotensin I generation was measured at 37 degrees C, pH 5.7, in the presence of homologous substrate (1400 ng/mL) before and after trypsin activation (100 micrograms/mL) in (A) haemolyzed erythrocytes, (B) supernatants of haemolyzed erythrocytes, and (C) in the sixth washing of erythrocytes diluted 1:1 with a 0.1 M Tris buffer containing 0.5% bovine serum albumin and protease inhibitors. Haemolyzed erythrocytes generated angiotensin I only after trypsin treatment, and the rate of generation was the same (A) before and (B) after centrifugation at 20,000g, indicating the absence of prorenin bound to the cell membranes. When aliquots of the last washing of erythrocytes (C) were tested for angiotensin I generation before and after trypsin, they did not generate angiotensin I, indicating that residual prorenin from the plasma was no longer present in our preparation. Angiotensin I generation by trypsin-treated A and B was completely abolished by preincubation with anti-renin serum. The level of prorenin was not significantly different in the erythrocytes from normal, hypertensive, and pregnant subjects (68 +/- 10, 58 +/- 7 and 107 +/- 17 pg angiotensin I.mL-1.h-1, ns) in spite of their very different plasma levels (21 +/- 2.5, 17 +/- 2.4 and 110 +/- 12 ng angiotensin I.mL-1.h-1, p less than 0.01 for pregnant women compared with both normal and hypertensive subjects). Our data show that prorenin is present in human erythrocytes in fairly constant and clearly detectable amounts, thus suggesting a possible intracellular role for it.  相似文献   

5.
Standard methods for determining prorenin-renin concentrations in plasma (PRC) and other tissues require the addition of exogenous renin substrate (angiotensinogen) to improve the kinetics of the renin reaction. We studied the effects of substrate prepared from normal human plasma fraction Cohn IV-4, or from nephrectomized (2NX) sheep plasma, on PRC of normal and 2NX human plasmas before and after prorenin activation by acid, cold, and trypsin, and compared the results with plasma renin activities (PRA, no added substrate). Plasmas from 2NX men exhibited negligible basal PRA, indicating that very little, if any, renin had been formed from the extrarenal prorenin they contained, and suggesting the lack of an endogenous prorenin activating mechanism, or "convertase," of probable renal origin. Prorenin was demonstrable by tryptic activation, more than by acid or cold, at up to about 30% of normal. Addition of Cohn IV-4 substrate to 2NX plasma unexpectedly produced (i) a basal PRC value higher than in normal plasma, (ii) total renin values after activation by acid, cold, and trypsin that were much closer to normal values than reflected by PRA methodology, without a commensurate increase (if anything a decrease) in prorenin as a percentage of total renin estimated by all activation methods, and (iii) substantial equalization of activation effects such that trypsin was no longer more effective than acid and cold (and this was also noted with normal plasma). The skewing effect of adding Cohn IV-4 substrate on the PRC of 2NX plasma was much greater than in normal plasma, even though 2NX plasma already had an above normal level of endogenous substrate and should have been influenced less. Enhancement of PRC was very pronounced even when Cohn IV-4 was added to make up only 9% of total (endogenous + exogenous) substrate in the incubation system, suggesting that it was not the added substrate but a renin-generating contaminant that inflated the PRC. Such inflation could be blocked by adding protease inhibitors, suggesting that the responsible protease(s) acted as a prorenin "convertase" that generated new renin from renal and (or) extrarenal prorenin contributed by the added substrate, as well as by the plasma being assayed. One component of convertase could be kallikrein, which was identified by chromogenic assay, the importance of which relative to total convertase activity is unknown.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Although elevated plasma prorenin levels are commonly found in diabetic patients and correlate with microvascular complications, the pathological role of these increases, if any, remains unclear. Prorenin/renin binding to the prorenin/renin receptor [(p)RR] enhances the efficiency of angiotensinogen cleavage by renin and unmasks prorenin catalytic activity. We asked whether plasma prorenin could be activated in local vascular tissue through receptor binding. Immunohistochemical staining showing localization of the (p)RR in the aorta to vascular smooth muscle cells (VSMCs). After cultured rat VSMCs were incubated with 10(-7) M inactive prorenin, cultured supernatant acquired the ability to generate ANG I from angiotensinogen, indicating that prorenin had been activated. Activated prorenin facilitated angiotensin generation in cultured VSMCs when exogenous angiotensinogen was added. Small interfering RNA (siRNA) against the (p)RR blocked this activation and subsequent angiotensin generation. Prorenin alone induced dose- and time-dependent increases in mRNA and protein for the profibrotic molecule plasminogen activator inhibitor (PAI)-1, effects that were blocked by siRNA, but not by the ANG II receptor antagonist saralasin. When inactive prorenin and angiotensinogen were incubated with cells, PAI-1 mRNA increased a striking 54-fold, 8-fold higher than the increase seen with prorenin alone. PAI-1 protein increased 2.75-fold. These effects were blocked by treatment with siRNA + saralasin. We conclude that prorenin at high concentration binds the (p)RR on VSMCs and is activated. This activation leads to increased expression of PAI-1 via ANG II-independent and -dependent mechanisms. These data provide a mechanism by which elevated prorenin levels in diabetes may contribute to the progression of fibrotic disease.  相似文献   

7.
1. Species specific problems complicating the measurement of prorenin and renin concentrations were studied in bovine, hog and horse plasma. 2. In contrast to horse renin, bovine and hog renin reacted with rat angiotensinogen, allowing measurement of the plasma renin concentration in cattle and hog with rat angiotensinogen as exogenous substrate. 3. Trypsin treatment of plasma in order to activate prorenin generated an interfering angiotensin I immunoreactive material in all three species, most extensively in horse plasma. 4. This material could be removed in bovine and hog plasma by a cation-exchange resin, allowing an assay of the plasma prorenin concentration to be constructed in these species. 5. Another strategy has to be followed in order to measure prorenin and renin concentrations in horse plasma.  相似文献   

8.
A new form of active renin was separated from inactive prorenin in normal human plasma by a new affinity chromatographic method on a column of Cibacron Blue F3GA-agarose. This active renin has a molecular weight of 54,000, considerably higher than the hitherto recognized active renin of 40,000 dalton in human plasma. The molecular weight of inactive prorenin was 56,000±2,000. Active renin produced from the inactive prorenin by trypsin or pepsin digestion or by acid treatment in in vitro experiments showed a molecular weight of 54,000±2,000. Active renin with a molecular weight of 40,000 was not found in 6 samples of untreated plasma of normal human subjects nor was it formed by treatment with trypsin, pepsin, or acid pH. It is concluded that a large form of active renin (54,000 dalton) exists in normal human plasma which is distinct from a smaller form and that the activatable “big renin” is a mixture of this active renin and totally inactive prorenin. This explains the absence of molecular weight change during the activation of “big renin”.  相似文献   

9.
10.
The cDNA encoding human preprorenin has been introduced into the adenovirus-transformed human kidney cell line 293. The recombinant 293 cells expressed and secreted prorenin; trypsin was used to activate the secreted prorenin to renin in vitro. The recombinant protein was purified to homogeneity by a single affinity chromatographic step. Using synthetic tetradecapeptide, the Km was 57.1 +/- 9.3 microM and the kcat was (7.48 +/- 1.57) x 10(3)/hr. Activation with trypsin resulted in a secondary cleavage between Arg53 and Leu54 generating a two chain form held together via a disulfide between Cys51 and Cys58. This secondary cleavage did not affect enzyme activity as determined by the ability of renin to degrade a synthetic tetradecapeptide substrate. Our paper demonstrates the potential for producing large quantities of renin from human kidney cells and also suggests that the use of trypsin, which has been widely used to convert prorenin to renin in vitro, causes a secondary cleavage in the renin peptide chain.  相似文献   

11.
Venous occlusion of the left arm in consenting men was induced for 10 or 20 min to stimulate local fibrinolytic and other proteases, thereby favouring the conversion of prorenin to renin. Using the two techniques cryoactivation and tryptic activation, we found that plasma active renin increased significantly after such occlusion (10 and 20 min) while prorenin rose more convincingly and progressively from 10 to 20 min. The renin increase can be partially attributed to hemoconcentration, but in vivo production and (or) local activation of prorenin to renin cannot be excluded. The prorenin rise can apparently be attributed to local extrarenal production, and not to hemoconcentration or influx, since it was progressive and neither prorenin nor renin levels were raised at all in blood circulating outside the occluded arm. Prekallikrein and plasminogen levels were elevated in occlusion plasmas, but responsibility of these enzyme systems for any enhanced activation of prorenin was not established. The trypsin inhibitory capacity was also elevated, increasing the requirement of trypsin to achieve optimal activation of prorenin, but not changing the prorenin estimate itself. Thus, prorenin appears to be released extrarenally, within the vasculature of an occluded arm, while in vitro evidence suggests that the mechanisms for its activation were stimulated. The importance of such extrarenal production and activation of prorenin for renin production under other physiological or pathophysiological conditions remains to be determined.  相似文献   

12.
By means of a new rapid and small scale purification method, human kidney renin has been purified from a single kidney in a homogeneous state, as judged on SDS-PAGE. The kidney which showed unusually high renin activity was from a patient with cardiomyopathy. 8,000-fold purification was attained by means of only pepstatin-aminohexyl-Sepharose chromatography and FPLC on a Mono Q column, and the yield was 34%. The specific activity was 5.63 mg angiotensin I per mg protein per h at 37 degrees C and pH 6.5 with porcine angiotensinogen as the substrate. The molecular weight was estimated to be 37,000 by SDS-PAGE and 38,000 by HPLC on a TSK G-3000 SW column. The preparation showed three bands on isoelectric focusing. The molecular weight and the profile on isoelectric focusing of the purified renin agreed with those found for the extracts of both the patient's kidney and a kidney with the usual low renin activity.  相似文献   

13.
Human prorenin activation by acid or trypsin is faster than rat prorenin by two orders of magnitude. No plausible mechanism exists to explain the difference. Two chimeric mutant prorenins were produced in CHO cells. A chimera, hPro/rRen, composed of human prorenin prosegment and rat active renin segment, was activated as fast as wild-type human prorenin at pH 3.3 and 25 degrees C or by trypsin (1 microg/ml). The other chimera, rPro/hRen, composed of rat prorenin prosegment and human active renin segment, was activated as slowly as wild-type rat prorenin at pH 3.3 and 25 degrees C or by trypsin (50 microg/ml). These results indicate that the rate of activation of prorenin is predominantly determined by the N-terminal pro-sequence. Plausible mechanisms are discussed.  相似文献   

14.
While elevated plasma prorenin levels are commonly found in diabetic patients and correlate with diabetic nephropathy, the pathological role of prorenin, if any, remains unclear. Prorenin binding to the (pro)renin receptor [(p)RR] unmasks prorenin catalytic activity. We asked whether elevated prorenin could be activated at the site of renal mesangial cells (MCs) through receptor binding without being proteolytically converted to renin. Recombinant inactive rat prorenin and a mutant prorenin that is noncleavable, i.e., cannot be activated proteolytically, are produced in 293 cells. After MCs were incubated with 10(-7) M native or mutant prorenin for 6 h, cultured supernatant acquired the ability to generate angiotensin I (ANG I) from angiotensinogen, indicating both prorenins were activated. Small interfering RNA (siRNA) against the (p)RR blocked their activation. Furthermore, either native or mutant rat prorenin at 10(-7) M alone similarly and significantly induced transforming growth factor-β(1), plasminogen activator inhibitor-1 (PAI-1), and fibronectin mRNA expression, and these effects were blocked by (p)RR siRNA, but not by the ANG II receptor antagonist, saralasin. When angiotensinogen was also added to cultured MCs with inactive native or mutant prorenin, PAI-1 and fibronectin were further increased significantly compared with prorenin or mutant prorenin alone. This effect was blocked partially by treatment with (p)RR siRNA or saralasin. We conclude that prorenin binds the (p)RR on renal MCs and is activated nonproteolytically. This activation leads to increased expression of PAI-1 and transforming growth factor-β(1) via ANG II-independent and ANG II-dependent mechanisms. These data provide a mechanism by which elevated prorenin levels in diabetes may play a role in the development of diabetic nephropathy.  相似文献   

15.
Cleavage of prorenin's prosegment causes irreversible formation of renin. In contrast, renin activity is reversibly exposed when prorenin is acidified to pH 3.3. Nonetheless, acidification of plasma results in irreversible activation of prorenin, because endogenous proteases cleave the prosegment of acid-activated prorenin. Chilling of plasma results in irreversible cryoactivation of prorenin. In this study we investigated whether cryoactivation of purified prorenin is reversible. The intrinsic renin activity of recombinant human prorenin was measured by an enzyme kinetic assay using partially purified human angiotensinogen as substrate. Results are expressed as a percent (mean +/- S.E.) of the maximal activity exposed after limited proteolysis by trypsin. The intrinsic renin activity of two pools (0.3 and 0.06 Goldblatt units/ml) was 1.5% +/- 0.3 and 1.2% +/- 0.6 at 37 degrees C. Activity increased to 19% +/- 0.3 and 26% +/- 0.5 after incubation at 0 degrees C and to 5.4% +/- 0.5 and 2.1% +/- 1.2 at room temperature. Cryoactivation did not occur in buffers containing more than 1 M NaCl. It took 8 min at 37 degrees C or 180 min at room temperature for cryoactivated prorenin to lose half of its intrinsic renin activity. It took 48 and 26 h, respectively, at 0 degree C for the two pools of prorenin at 37 degrees C to regain half of their maximum intrinsic activity at 0 degrees C. A direct immunoradiometric assay that detects active renin but not prorenin was able to detect cryoactivated prorenin. These results show that human prorenin can be reversibly cryoactivated in buffers of low ionic strength and has greater intrinsic activity at room temperature than at 37 degrees C.  相似文献   

16.
A Miyata  L J Ge  N Minamino  A Arimura 《Peptides》1990,11(1):117-121
In the search for novel neuropeptides in porcine follicular fluid (pff) using smooth muscle contractile activity as a response parameter, a substance with a marked activity was isolated in a pure form. By amino acid analysis and sequential study, this substance has been chemically revealed to be angiotensin I. A much smaller amount of additional activity was isolated and found to be angiotensin II, as determined by radioimmunoassay. Radioimmunoassays for angiotensin I and II confirmed that the amount of angiotensin I determined was much greater than that of angiotensin II. A comparative study of the extractions, however, indicated a large amount of angiotensin I had been generated from angiotensinogen by endogenous renin in the follicular fluid which could be activated during extraction and ultrafiltration at a low pH. These findings are consistent with the previous reports that described a high concentration of prorenin in the follicular fluid, acid activation of prorenin to renin and the subsequent generation of angiotensin I from endogenous angiotensinogen.  相似文献   

17.
Prorenin can be converted to renin by limited proteolysis with trypsin. In the current study we compared conditions for activation of human renal and ovarian prorenin and cat renal prorenin with either liquid-phase trypsin or trypsin bound to sepharose (solid phase). Higher concentrations of trypsin were required to activate cat prorenin than human prorenin. Human prorenin was destroyed by high concentrations of trypsin, while cat prorenin was not destroyed by up to 2 mg/mL solid-phase trypsin. For both human and cat prorenin, addition of the competitive serine protease inhibitor benzamidine--HCl increased the concentration of trypsin needed to activate prorenin, resulting in slightly higher levels of human prorenin but lower levels of cat prorenin. For human samples, activation with solid-phase trypsin resulted in slightly higher estimates of prorenin than liquid-phase trypsin. These results demonstrate species differences in the susceptibility of prorenin to trypsin cleavage. Cat prorenin requires more trypsin to be activated and is less susceptible to destruction than human prorenin.  相似文献   

18.
Renin is formed by intracellular processing of prorenin and catalyzes the conversion of angiotensinogen to angiotensin I, the precursor to angiotensin II. Several tissues synthesize prorenin. However, in man, the kidney is the only known source of circulating renin, raising the possibility that the processing enzyme is unique to that tissue. We have transfected a gene that directs prorenin synthesis in pituitary AtT-20 cells, which are capable of processing other prohormones. The results demonstrate that transfected AtT-20 cells can secrete inactive prorenin, accurately process prorenin to active renin, and be stimulated to release active renin in response to a secretagogue. These data imply that cellular elements capable of directing the processing of prorenin to renin and its correct subcellular compartmentalization may be present in nonrenal cell types and that critical elements of the regulated release of renin that occur in the kidney can be reconstituted in cells in culture.  相似文献   

19.
Properties of renin substrate in rabbit plasma with a note on its assay   总被引:4,自引:3,他引:1  
1. Rabbit plasma enzymes that degrade angiotensin I are inhibited completely by the combination of 2,3-dimercaptopropan-1-ol (10mm), EDTA (10mm) and chlorhexidine gluconate (0.005%, w/v). These compounds do not modify the reaction of renin with renin substrate and are termed the selective inhibitors. 2. The renin substrate concentration of plasma can be measured as angiotensin I content by incubating plasma plus the selective inhibitors with renin for a time sufficient to allow complete utilization of renin substrate. 3. This reaction obeys first-order kinetics to substrate concentrations of at least 1000ng. of angiotensin I content/ml. In general, the renin substrate concentrations of normal rabbit plasmas are less than 1000ng. of angiotensin I content/ml. Thus the time required for the complete release of angiotensin I from normal plasma is inversely related to renin activity and is independent of renin substrate concentration. 4. A method for the assay of renin substrate, taking these reaction kinetics into account, is presented.  相似文献   

20.
Despite suppression of the circulating renin-angiotensin system (RAS), high salt intake (HSI) aggravates kidney injury in chronic kidney disease. To elucidate the effect of HSI on intrarenal RAS, we investigated the levels of intrarenal prorenin, renin, (pro)renin receptor (PRR), receptor-mediated prorenin activation, and ANG II in chronic anti-thymocyte serum (ATS) nephritic rats on HSI. Kidney fibrosis grew more severe in the nephritic rats on HSI than normal salt intake. Despite suppression of plasma renin and ANG II, marked increases in tubular prorenin and renin proteins without concomitant rises in renin mRNA, non-proteolytically activated prorenin, and ANG II were noted in the nephritic rats on HSI. Redistribution of PRR from the cytoplasm to the apical membrane, along with elevated non-proteolytically activated prorenin and ANG II, was observed in the collecting ducts and connecting tubules in the nephritic rats on HSI. Olmesartan decreased cortical prorenin, non-proteolytically activated prorenin and ANG II, and apical membranous PRR in the collecting ducts and connecting tubules, and attenuated the renal lesions. Cell surface trafficking of PRR was enhanced by ANG II and was suppressed by olmesartan in Madin-Darby canine kidney cells. These data suggest the involvement of the ANG II-dependent increase in apical membrane PRR in the augmentation of intrarenal binding of prorenin and renin, followed by nonproteolytic activation of prorenin, enhancement of renin catalytic activity, ANG II generation, and progression of kidney fibrosis in the nephritic rat kidneys on HSI. The origin of the increased tubular prorenin and renin remains to be clarified. Further studies measuring the urinary prorenin and renin are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号