首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
One of the most difficult and time-consuming aspects of building compartmental models of single neurons is assigning values to free parameters to make models match experimental data. Automated parameter-search methods potentially represent a more rapid and less labor-intensive alternative to choosing parameters manually. Here we compare the performance of four different parameter-search methods on several single-neuron models. The methods compared are conjugate-gradient descent, genetic algorithms, simulated annealing, and stochastic search. Each method has been tested on five different neuronal models ranging from simple models with between 3 and 15 parameters to a realistic pyramidal cell model with 23 parameters. The results demonstrate that genetic algorithms and simulated annealing are generally the most effective methods. Simulated annealing was overwhelmingly the most effective method for simple models with small numbers of parameters, but the genetic algorithm method was equally effective for more complex models with larger numbers of parameters. The discussion considers possible explanations for these results and makes several specific recommendations for the use of parameter searches on neuronal models.  相似文献   

2.
In this study, we address the meta-task scheduling problem in heterogeneous computing (HC) systems, which is to find a task assignment that minimizes the schedule length of a meta-task composed of several independent tasks with no data dependencies. The fact that the meta-task scheduling problem in HC systems is NP-hard has motivated the development of many heuristic scheduling algorithms. These heuristic algorithms, however, neglect the stochastic nature of task execution times in an attempt to minimize a deterministic objective function, which is the maximum of the expected values of machine loads. Contrary to existing heuristics, we account for this stochastic nature by modeling task execution times as random variables. We, then, formulate a stochastic scheduling problem where the objective is to minimize the expected value of the maximum of machine loads. We prove that this new objective is underestimated by the deterministic objective function and that an optimal task assignment obtained with respect to the deterministic objective function could be inefficient in a real computing platform. In order to solve the stochastic scheduling problem posed, we develop a genetic algorithm based scheduling heuristic. Our extensive simulation studies show that the proposed genetic algorithm can produce better task assignments as compared to existing heuristics. Specifically, we observe a performance improvement on the relative cost heuristic (M.-Y. Wu and W. Shu, A high-performance mapping algorithm for heterogeneous computing systems, in: Int. Parallel and Distributed Processing Symposium, San Francisco, CA, April 2001) by up to 61%.  相似文献   

3.
《IRBM》2020,41(4):229-239
Feature selection algorithms are the cornerstone of machine learning. By increasing the properties of the samples and samples, the feature selection algorithm selects the significant features. The general name of the methods that perform this function is the feature selection algorithm. The general purpose of feature selection algorithms is to select the most relevant properties of data classes and to increase the classification performance. Thus, we can select features based on their classification performance. In this study, we have developed a feature selection algorithm based on decision support vectors classification performance. The method can work according to two different selection criteria. We tested the classification performances of the features selected with P-Score with three different classifiers. Besides, we assessed P-Score performance with 13 feature selection algorithms in the literature. According to the results of the study, the P-Score feature selection algorithm has been determined as a method which can be used in the field of machine learning.  相似文献   

4.
Summary Variable selection for clustering is an important and challenging problem in high‐dimensional data analysis. Existing variable selection methods for model‐based clustering select informative variables in a “one‐in‐all‐out” manner; that is, a variable is selected if at least one pair of clusters is separable by this variable and removed if it cannot separate any of the clusters. In many applications, however, it is of interest to further establish exactly which clusters are separable by each informative variable. To address this question, we propose a pairwise variable selection method for high‐dimensional model‐based clustering. The method is based on a new pairwise penalty. Results on simulated and real data show that the new method performs better than alternative approaches that use ?1 and ? penalties and offers better interpretation.  相似文献   

5.
Xeroderma pigmentosum (XP) is a rare genetic skin disorder caused due to the extreme sensitivity for ultraviolet (UV) radiations. On its exposure, DNA acquires damages leading to skin and often neurological abnormalities. The DNA repair implicated in fixing UV-induced damages is NER and mutations in genes involved in NER and TLS form the basis of XP. The analyses of such mutations are vital for understanding XP and involved cancer genetics to facilitate the identification of crucial biomarkers and anticancer therapeutics. We detected the deleterious nsSNPs and examined them at structure-level by altering the structure, estimating secondary structure, solvent accessibility and performing site specific analysis. Crucial phosphorylation sites were also identified for their role in the disorder. These mutational and structural analyses offer valuable insight to the fundamental association of genetic mutations with phenotypic variations in XP and will assist experimental biologists to evaluate the mutations and their impact on genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号