首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dendritic cells (DCs) efficiently bind and transmit human immunodeficiency virus (HIV) to cocultured T cells and so may play an important role in HIV transmission. DC-SIGN, a novel C-type lectin that is expressed in DCs, has recently been shown to bind R5 HIV type 1 (HIV-1) strains and a laboratory-adapted X4 strain. To characterize the interaction of DC-SIGN with primate lentiviruses, we investigated the structural determinants of DC-SIGN required for virus binding and transmission to permissive cells. We constructed a panel of DC-SIGN mutants and established conditions which allowed comparable cell surface expression of all mutants. We found that R5, X4, and R5X4 HIV-1 isolates as well as simian immunodeficiency and HIV-2 strains bound to DC-SIGN and could be transmitted to CD4/coreceptor-positive cell types. DC-SIGN contains a single N-linked carbohydrate chain that is important for efficient cell surface expression but is not required for DC-SIGN-mediated virus binding and transmission. In contrast, C-terminal deletions removing either the lectin binding domain or the repeat region abrogated DC-SIGN function. Trypsin-EDTA treatment inhibited DC-SIGN mediated infection, indicating that virus was maintained at the surface of the DC-SIGN-expressing cells used in this study. Finally, quantitative fluorescence-activated cell sorting analysis of AU1-tagged DC-SIGN revealed that the efficiency of virus transmission was strongly affected by variations in DC-SIGN expression levels. Thus, variations in DC-SIGN expression levels on DCs could greatly affect the susceptibility of human individuals to HIV infection.  相似文献   

2.
3.
Natural killer T (NKT) cells express a highly conserved T-cell receptor (TCR) and recognize glycolipids in the context of CD1d molecules. We recently demonstrated that CD4+ NKT cells are highly susceptible to human immunodeficiency virus type 1 (HIV-1) infection and are selectively depleted in HIV-infected individuals. Here, we identified macaque NKT cells using CD1d tetramers and human Valpha24 antibodies. Similar to human NKT cells, alpha-galactosylceramide (alpha-GalCer)-pulsed dendritic cells activate and expand macaque NKT cells. Upon restimulation with alpha-GalCer-pulsed CD1d(+) cells, macaque NKT cells secreted high levels of cytokines, a characteristic of these T cells. Remarkably, the majority of resting and activated macaque NKT cells expressed CD8, and a smaller portion expressed CD4. Macaque NKT cells also expressed the HIV-1/simian immunodeficiency virus (SIV) coreceptor CCR5, and the CD4+ subset was susceptible to SIV infection. Identification of macaque NKT cells has major implications for delineating the role of these cells in nonhuman primate disease models of HIV as well as other pathological conditions, such as allograft rejection and autoimmunity.  相似文献   

4.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infect and productively replicate in macrophages and T lymphocytes. Here, we show that SIV virions derived from macrophages have higher levels of infectivity than those derived from T cells. The lower infectivity of T-cell-derived viruses is influenced by the quantity or type of mannose residues on the virion. Our results demonstrate that the cellular origin of a virus is a major factor in viral infectivity. Cell-type-specific factors in viral infectivity, and organ-specific or disease stage-specific differences in cellular derivation of virions, can be critical in the pathogenesis of HIV and AIDS.  相似文献   

5.
Abstract: Polyomaviruses have proven oncogenicity in nonhost experimental animals; however, studies concerning the association between human brain tumors and simian and human polyomaviruses have yielded inconclusive results. We examined the relationship of SV40 to a malignant astrocytoma found in the right frontal lobe of a pigtail macaque (Macaca nemestrina) infected with simian immunodeficiency virus (SIV). Consistent with the histologic diagnosis, the tumor was immunoreactive with antibodies to S-100 protein, vimentin, and glial fibrillary acidic protein, but negative for neurofilament protein, synaptophysin, neuron-specific enolase, and chromogranin A. At the time of SIV inoculation, the animal was seropositive for SV40. Polymerase chain reaction assay of tumor DNA, but not normal brain DNA, yielded a 300 base-pair fragment corresponding to the carboxy-terminal coding region (C-terminus) of the large T antigen gene of SV40, suggesting an association with the tumor.  相似文献   

6.
In the early events of human immunodeficiency virus type 1 (HIV-1) infection, immature dendritic cells (DCs) expressing the DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) receptor capture small amounts of HIV-1 on mucosal surfaces and spread viral infection to CD4(+) T cells in lymph nodes (22, 34, 45). RNA interference has emerged as a powerful tool to gain insight into gene function. For this purpose, lentiviral vectors that express short hairpin RNA (shRNA) for the delivery of small interfering RNA (siRNA) into mammalian cells represent a powerful tool to achieve stable gene silencing. In order to interfere with DC-SIGN function, we developed shRNA-expressing lentiviral vectors capable of conditionally suppressing DC-SIGN expression. Selectivity of inhibition of human DC-SIGN and L-SIGN and chimpanzee and rhesus macaque DC-SIGN was obtained by using distinct siRNAs. Suppression of DC-SIGN expression inhibited the attachment of the gp120 envelope glycoprotein of HIV-1 to DC-SIGN transfectants, as well as transfer of HIV-1 to target cells in trans. Furthermore, shRNA-expressing lentiviral vectors were capable of efficiently suppressing DC-SIGN expression in primary human DCs. DC-SIGN-negative DCs were unable to enhance transfer of HIV-1 infectivity to T cells in trans, demonstrating an essential role for the DC-SIGN receptor in transferring infectious viral particles from DCs to T cells. The present system should have broad applications for studying the function of DC-SIGN in the pathogenesis of HIV as well as other pathogens also recognized by this receptor.  相似文献   

7.
The severe acute respiratory syndrome coronavirus (SARS-CoV) synthesizes several putative viral envelope proteins, including the spike (S), membrane (M), and small envelope (E) glycoproteins. Although these proteins likely are essential for viral replication, their specific roles in SARS-CoV entry have not been defined. In this report, we show that the SARS-CoV S glycoprotein mediates viral entry through pH-dependent endocytosis. Further, we define its cellular tropism and demonstrate that virus transmission occurs through cell-mediated transfer by dendritic cells. The S glycoprotein was used successfully to pseudotype replication-defective retroviral and lentiviral vectors that readily infected Vero cells as well as primary pulmonary and renal epithelial cells from human, nonhuman primate, and, to a lesser extent, feline species. The tropism of this reporter virus was similar to that of wild-type, replication-competent SARS-CoV, and binding of purified S to susceptible target cells was demonstrated by flow cytometry. Although myeloid dendritic cells were able to interact with S and to bind virus, these cells could not be infected by SARS-CoV. However, these cells were able to transfer the virus to susceptible target cells through a synapse-like structure. Both cell-mediated infection and direct infection were inhibited by anti-S antisera, indicating that strategies directed toward this gene product are likely to confer a therapeutic benefit for antiviral drugs or the development of a SARS vaccine.  相似文献   

8.
To understand viral and host factors that contribute to transplacental transmission of human immunodeficiency virus, we developed an animal model using pregnant female macaques infected with simian immunodeficiency virus (SIV). Pregnant females were inoculated intravenously during midgestation with either a well-characterized primary isolate of SIV (SIV/DeltaB670) or a combination of SIV/DeltaB670 and the macrophage-tropic molecular clone SIV/17E-Fr. The viral genetic diversity in five infected female macaques and their in utero-infected infants was analyzed. All of the mothers harbored a genetically diverse virus population at parturition, whereas a single genotype from the maternal quasispecies was identified in the infants at birth. Only one of two variants was found in the infants: SIV/17E-Fr (two cases) or a genotype contained within the SIV/DeltaB670 quasispecies (three cases). The macrophage-tropic properties of both transmitted genotypes were suggested by productive replication in primary rhesus macrophage cultures in vitro and the clonal presence in central nervous system tissue of infected monkeys with encephalitis. These observations provide compelling evidence for both genotypic and phenotypic selection in transplacental transmission of SIV and suggest a critical role for macrophages in fetal infection in utero.  相似文献   

9.
The C-type lectins DC-SIGN and DC-SIGNR capture and transfer human immunodeficiency virus (HIV) to susceptible cells, although the underlying mechanism is unclear. Here we show that DC-SIGN/DC-SIGNR-mediated HIV transmission involves dissociable binding and transfer steps, indicating that efficient virus transmission is not simply due to tethering of virus to the cell surface.  相似文献   

10.
Myeloid dendritic cells (mDC) are lost from blood in individuals with human immunodeficiency virus (HIV) infection but the mechanism for this loss and its relationship to disease progression are not known. We studied the mDC response in blood and lymph nodes of simian immunodeficiency virus (SIV)-infected rhesus macaques with different disease outcomes. Early changes in blood mDC number were inversely correlated with virus load and reflective of eventual disease outcome, as animals with stable infection that remained disease-free for more than one year had average increases in blood mDC of 200% over preinfection levels at virus set-point, whereas animals that progressed rapidly to AIDS had significant loss of mDC at this time. Short term antiretroviral therapy (ART) transiently reversed mDC loss in progressor animals, whereas discontinuation of ART resulted in a 3.5-fold increase in mDC over preinfection levels only in stable animals, approaching 10-fold in some cases. Progressive SIV infection was associated with increased CCR7 expression on blood mDC and an 8-fold increase in expression of CCL19 mRNA in lymph nodes, consistent with increased mDC recruitment. Paradoxically, lymph node mDC did not accumulate in progressive infection but rather died from caspase-8-dependent apoptosis that was reduced by ART, indicating that increased recruitment is offset by increased death. Lymph node mDC from both stable and progressor animals remained responsive to exogenous stimulation with a TLR7/8 agonist. These data suggest that mDC are mobilized in SIV infection but that an increase in the CCR7-CCL19 chemokine axis associated with high virus burden in progressive infection promotes exodus of activated mDC from blood into lymph nodes where they die from apoptosis. We suggest that inflamed lymph nodes serve as a sink for mDC through recruitment, activation and death that contributes to AIDS pathogenesis.  相似文献   

11.
African green monkeys (AGMs) infected by simian immunodeficiency virus (SIV) SIVagm are resistant to AIDS. SIVagm-infected AGMs exhibit levels of viremia similar to those described during pathogenic human immunodeficiency virus type 1 (HIV-1) and SIVmac infections in humans and macaques, respectively, but contain lower viral loads in their lymph nodes. We addressed the potential role of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN; CD209) in viral dissemination. In previous studies, it has been shown that human DC-SIGN and macaque DC-SIGN allow transmission of HIV and SIVmac to T cells. Here, we looked at the ability of DC-SIGN derived from AGM lymph nodes to interact with SIVagm. We show that DC-SIGN-expressing cells are present mainly in the medulla and often within the cortex and/or paracortex of AGM lymph nodes. We describe the isolation and characterization of at least three isoforms of dc-sign mRNA in lymph nodes of AGMs. The predicted amino acid sequence from the predominant mRNA isoform, DC-SIGNagm1, is 92 and 99% identical to the corresponding human and rhesus macaque DC-SIGN amino acid sequences, respectively. DC-SIGNagm1 is characterized by the lack of the fourth motif in the repeat domain. This deletion was also detected in the dc-sign gene derived from thirteen animals belonging to five other African monkey species and from four macaques (Macaca fascicularis and M. mulatta). Despite three- to seven-amino-acid modifications compared to DC-SIGNmac, DC-SIGNagm1 allows transmission of SIVagm to T cells. Furthermore, AGM monocyte-derived dendritic cells (MDDC) expressed at least 100,000 DC-SIGN molecules and were able to transmit SIVagm to T cells. At a low multiplicity of infection (10(-5) 50% tissue culture infective doses/cell), viral transmission by AGM MDDC was mainly DC-SIGN dependent. The present study reveals that DC-SIGN from a natural host species of SIV has the ability to act as an efficient attachment and transmission factor for SIVagm and suggests the absence of a direct link between this ability and viral load levels in lymph nodes.  相似文献   

12.
The genomes of simian immunodeficiency viruses isolated from African green monkeys (SIVagm) contain a single accessory gene homolog of human immunodeficiency virus type 1 (HIV-1) vpr. This genomic organization differs from that of SIVsm-SIVmac-HIV-2 group viruses, which contain two gene homologs, designated vpr and vpx, which in combination appear to share the functions of HIV-1 vpr. The in vitro role of the SIVagm homolog was evaluated with molecularly cloned, pathogenic SIVagm9063-2. These studies revealed that this gene shares properties of HIV-1 vpr, such as nuclear and virion localization. In addition, SIVagm mutants with inactivating mutations of vpr are unable to replicate in nondividing cells, such as macaque monocyte-derived macrophages, but replicate to almost wild-type levels in a susceptible human T-cell line. The transport of virus preintegration complexes into the nucleus in primary macrophages, as measured by the production of unintegrated circular viral DNA, is less efficient for the mutant viruses than it is for the wild-type virus. SIVagm mutants also replicate inefficiently in primary macaque peripheral blood mononuclear cells, with a propensity for substitutions that remove the inserted inactivating stop codon. These data, in conjunction with recent findings that the Vpr protein is capable of inducing G2 arrest, are consistent with designation of this SIVagm accessory gene as vpr to reflect its shared functions and properties with HIV-1 vpr.  相似文献   

13.
14.
Identifying the cells that can be infected with HIV in vivo and thus potentially persist as latent reservoirs is of high priority. Here, we report the major infected cells in a chronically simian immunodeficiency virus (SIV)‐infected macaque that developed AIDS and encephalitis. A majority of the infected cells were detected as non‐proliferating resting cells. SIV‐infected non‐proliferating resting cells were found to be playing an important role in viral pathogenesis, persistence, or reservoir formation.  相似文献   

15.
The C-type lectins DC-SIGN and DC-SIGNR efficiently bind human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) strains and can transmit bound virus to adjacent CD4-positive cells. DC-SIGN also binds efficiently to the Ebola virus glycoprotein, enhancing Ebola virus infection. DC-SIGN is thought to be responsible for the ability of dendritic cells (DCs) to capture HIV and transmit it to T cells, thus promoting HIV dissemination in vitro and perhaps in vivo as well. To investigate DC-SIGN function and expression levels on DCs, we characterized a panel of monoclonal antibodies (MAbs) directed against the carbohydrate recognition domain of DC-SIGN. Using quantitative fluorescence-activated cell sorter technology, we found that DC-SIGN is highly expressed on immature monocyte-derived DCs, with at least 100,000 copies and often in excess of 250,000 copies per DC. There was modest variation (three- to fourfold) in DC-SIGN expression levels between individuals and between DCs isolated from the same individual at different times. Several MAbs efficiently blocked virus binding to cell lines expressing human or rhesus DC-SIGN, preventing HIV and SIV transmission. Interactions with Ebola virus pseudotypes were also blocked efficiently. Despite their ability to block virus-DC-SIGN interactions on cell lines, these antibodies only inhibited transmission of virus from DCs by approximately 50% or less. These results indicate that factors other than DC-SIGN may play important roles in the ability of DCs to capture and transmit HIV.  相似文献   

16.
A tritium-labeled DNA envelope gene probe was used to detect Simian Immunodeficiency Virus in formalin fixed lymph nodes from rhesus monkeys experimentally inoculated with SIVmac251. Cells containing SIV RNA produced strong hybridization signal and were present in small numbers in biopsy specimens and in much greater numbers in lymph nodes collected at autopsy. SIV-infected cells were morphologically identified as lymphocytes and macrophages.  相似文献   

17.
Pulmonary infections and dysfunction are frequent outcomes during the development of immunodeficiency associated with human immunodeficiency virus type 1 (HIV-1) infection, and obtaining a better understanding of the immunologic changes that occur in lungs following HIV-1 infection will provide a foundation for the development of further intervention strategies. We sought here to identify changes in the pulmonary immune environment that arise during simian immunodeficiency virus (SIV) infection of rhesus macaques, which serves as an excellent model system for HIV-1 infection and disease. To examine the gene expression profiles of macaque lung tissues following infection with the pathogenic SIV/DeltaB670 isolate, we performed cDNA microarray hybridizations with lung total RNAs using two commercially available cDNA arrays and a custom-fabricated, immunologically focused macaque cDNA microarray. In situ hybridization and real-time RT-PCR were performed to provide additional analyses of gene expression. Among the genes exhibiting the highest level of induction in lung tissues were the IFN-gamma-inducible chemokines, CXCL10/IP-10 and CXCL9/Mig. In situ hybridization and real-time RT-PCR strongly supported these findings. Correlation analyses revealed that the levels of expression of IFN-gamma, CXCL9/Mig, and CXCL10/IP-10 mRNAs were all strongly positively correlated, and that CXCL10/IP-10 mRNA and Pneumocystis carinii rRNA were positively correlated. Taken together, these findings demonstrate that inflammatory chemokines are among the most differentially expressed mRNAs in macaque lung tissues during systemic SIV infection of rhesus macaques, and provide insight into the complicated events occurring in the lung tissues during HIV-1 infection in humans.  相似文献   

18.
Cultured macaque macrophages are permissive for the replication of SIVmac251, and inoculation with virus is followed by the production of viral p27. Neutralizing macaque polyclonal and murine monoclonal antibodies preincubated with the virus prevented infection but did not prevent cytopathic virus replication when added more than 3 days after inoculation with virus. However, application of the neutralizing antibodies to macrophages 24 h after inoculation with virus resulted in sustained, low-level production of viral antigen. Cell lysates and individual macrophages from treated cultures contained less viral protein by Western blot (immunoblot) and immunocytochemistry than untreated controls. In situ hybridization and polymerase chain reaction procedures for detecting and estimating relative amounts of viral RNA and DNA showed that both viral nucleic acids failed to increase beyond the levels obtained before the addition of neutralizing antibodies. The data suggest that macrophages may need to be infected with a minimum threshold of virus particles in order to reach their full potential for virus replication and that their exposure to neutralizing antibodies prior to reaching this threshold resulted in limited virus replication.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号