首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C H Barlow  P I Ohlsson  K G Paul 《Biochemistry》1976,15(10):2225-2229
Infrared difference spectra, FeIIICO vs. FeIII of horseradish peroxidase isoenzymes A2 and C were recorded from 2000 to 1800 cm-1. Under alkaline conditions, pH 9, both isoenzymes exhibit two CO stretching bands, at 1938 and 1925 cm-1 for A2 and at 1933 and 1929 cm-1 for C. As the pH is lowered the low-frequency band for each isoenzyme decreases in intensity with a concommitant appearance and increase in intensity of a band at 1906 and 1905 cm-1 for the A2 and C isoenzymes, respectively. These changes conform to pK values of 6.7 for the A2 and 8.8 for the C isoenzymes of horseradish peroxidase. The interpretation of the infrared results was simplified by the observation that a linear relationship exists between the redox potential, Em7, for the FeIII/FeII system vs. the infrared CO stretching frequency, vCO, for cytochrome a3, hemoglobin, myoglobin, and cytochrome P-450 cam with substrate. This relationship suggests that the primary force altering vCO in these heme proteins is a variation in electron density at the heme iron and not direct protein interactions with the CO ligand. The horseradish peroxidase infrared bands in the 1930-cm-1 region correlate well with this relationship. The large deviation of the 1905-cm-1 band from the linear relationship and its dependence upon hydrogen ion concentration are consistent with horseradish peroxidase having a single CO binding site which can hold in two geometries, one of which contains an amino acid moiety capable of forming a hydrogen bond to the carbonyl oxygen.  相似文献   

2.
The active site of the oxygen-avid truncated hemoglobin from Bacillus subtilis has been characterized by infrared absorption and resonance Raman spectroscopies, and the dynamics of CO rebinding after photolysis has been investigated by picosecond transient absorption spectroscopy. Resonance Raman experiments on the CO bound adduct revealed the presence of two Fe-CO stretching bands at 545 and 520 cm-1, respectively. Accordingly, two C-O stretching bands at 1924 and 1888 cm-1 were observed in infrared absorption and resonance Raman measurements. The very low C-O stretching frequency at 1888 cm-1 (corresponding to the extremely high RR stretching frequency at 545 cm-1) indicates unusually strong hydrogen bonding between CO and distal residues. On the basis of a comparison with other truncated hemoglobin it is envisaged that the two CO conformers are determined by specific interactions with the TrpG8 and TyrB10 residues. Mutation of TrpG8 to Leu deeply alters the hydrogen-bonding network giving rise mainly to a CO conformer characterized by a Fe-CO stretching band at 489 cm-1 and a CO stretching band at 1958 cm-1. Picosecond laser photolysis experiments carried out on the CO bound adduct revealed dynamical processes that take place within a few nanoseconds after photolysis. Picosecond dynamics is largely dominated by CO geminate rebinding and is consistent with strong H-bonding contributions of TyrB10 and TrpG8 to ligand stabilization.  相似文献   

3.
The effects of pH upon infrared spectra [CO stretching frequency (vco) region] and visible spectra of the CO complexes of soybean leghemoglobins a, c1, and c2, sperm whale myoglobin, and human hemoglobin A are reported. The vco for leghemoglobin--CO complexes was 1947.5 cm-1 at neutral pH. At acid pH myoglobin-- and hemoglobin--CO complexes developed vco bands at 1966--1968 cm-1, whereas leghemoglobin--CO complexes developed vco bands at approximately 1957 cm-1. All pKapp co values determined by pH-dependent variation of vco fell in the range 4.0--4.6. The pKapp co values determined from visible spectra were consistent with vco-determined values except for that of myoglobin--CO (visible pKapp co = 5.8). The pKapp co values in the 4.0--4.6 range appear to be pK values of the distal histidines, while the visible pKapp co of myoglobin--CO appears to be the pK of a group other than the distal and proximal histidines. The data are consistent with a model in which protonation of the distal histidine permits protein-free heme FeCO geometry in leghemoglobin--CO complexes but not in myoglobin-- or hemoglobin--CO complexes. Thus the heme pockets of leghemoglobins appear to be more flexible than the heme pockets of myoglobin and hemoglobin. The effects of pH upon visible spectra of the O2 complexes of soybean leghemoglobins a, c1, and c2, sperm whale myoglobin, and human hemoglobin A also are reported. pKapp o2 values of approximately 5.5 (leghemoglobins) and 4.4 (hemoglobin) are probably the pK values of the distal histidines. Comparisons of pKapp o2 values with pKapp co values indicate a more flexible heme pocket in leghemoglobins than in hemoglobin. The O2 complex of leghemoglobin c2 differed significantly from the O2 complexes of leghemoglobins a and c1 in visible spectra and titration behavior. These differences might be associated with the small structural differences in the region between the E and F helixes of leghemoglobins.  相似文献   

4.
Redox properties of component I and IV from trout hemoglobin (Salmo irideus) have been studied kinetically and at equilibrium. In the case of component I of trout hemoglobin, the mid-point potential (Eh) is pH independent below the acid-alkaline transition (pKa approximately equal to 8.6) and decreases at higher pH, following the deprotonation of the water molecule. Similarly to human hemoglobin, the mid-point potential of component IV of trout hemoglobin is pH-dependent, but the redox Bohr effect is extended to more acid pH. Moreover, the cooperativity of the redox equilibrium process is higher than in human hemoglobin. These features parallel the oxygen-binding properties of the same hemoglobin components from trout hemolysate. Differently from human hemoglobin, the oxidation kinetics of the two hemoglobins from trout by potassium ferricyanide show markedly biphasic progress curves with pH-independent second-order rate constants. This behavior suggests a different energy barrier for the interaction with ferricyanide in the two types of subunit of both Hb components from trout.  相似文献   

5.
The effect of several anions on the oxygen equilibrium of hemoglobin components (Hb Trout I, II, and IV) from trout has been investigated.The functional properties of Hb Trout I and II are very slightly affected by organic phosphates (ATP, IHP) and pyridoxal phosphate. On the other hand the oxygen affinity of both components is affected, to the same extent, by the presence of sodium chloride; this effect seems to be pH and temperature independent. For Hb Trout I experiments on the effect of orthophosphate, pyrophosphate and pyridoxal phosphate point to a certain degree of correlation between the size of the phosphate and its effect on the functional behavior of the protein.In the case of Hb Trout I and II the differences in the effect of the various organic and inorganic phosphates may be interpreted, at a molecular level, in terms of loss of charge complementarity and (or) steric hindrance effects.On the other hand, as in the case of human hemoglobin, organic or inorganic phosphates decrease the oxygen affinity of Hb Trout IV. In addition various phosphates shift the region where the Root effect is operative toward higher pH values, thereby acting as allosteric effectors. For pyridoxal phosphate, kinetic experiments have shown that the rate of binding to Hb trout IV is several orders of magnitude smaller than that for other organic phosphates, similarly to what has been reported for human hemoglobin.  相似文献   

6.
We report an unusually high frequency (543 cm(-)(1)) for an Fe-CO stretching mode in the CO complex of Ascaris suum hemoglobin as compared to vertebrate hemoglobins in which the frequency of the Fe-CO mode is much lower. A second Fe-CO stretching mode in Ascaris hemoglobin is observed at 515 cm(-1). We propose that these two Fe-CO stretching modes arise from two protein conformers corresponding to interactions of the heme-bound CO with the B10-tyrosine or the E7-glutamine residues. This postulate is supported by spectra from the B10-Tyr --> Phe mutant in which the 543 cm(-1) line is absent. Thus, a strong polar interaction, such as hydrogen bonding, of the CO with the distal B10 tyrosine residue is the dominant factor that causes this anomalously high frequency. Strong hydrogen bonding between O(2) and distal residues in the oxy complex of Ascaris hemoglobin has been shown to result in a rigid structure, rendering an extremely low oxygen off rate [Gibson, Q. H., and Smith, M. H. (1965) Proc. R. Soc. London B 163, 206-214]. In contrast, the CO off rate in Ascaris hemoglobin is very similar to that in sperm whale myoglobin. The high CO off rate relative to that of O(2) in Ascaris hemoglobin is attributed to a rapid equilibrium between the two conformations of the protein in the CO adduct, with the off rate being determined by the conformer with the higher rate.  相似文献   

7.
The unicellular protozoan Paramecium caudatum contains a monomeric hemoglobin (Hb) that has only 116 amino acid residues. This Hb shares the simultaneous presence of a distal E7 glutamine and a B10 tyrosine with several invertebrate Hbs. In the study presented here, we have used ligand binding kinetics and resonance Raman spectroscopy to characterize the effect of the distal pocket residues of Paramecium Hb in stabilizing the heme-bound ligands. In the ferric state, the high-spin to low-spin (aquo-hydroxy) transition takes place with a pK(a) of approximately 9.0. The oxygen affinity (P(50) = 0.45 Torr) is similar to that of myoglobin. The oxygen on- and off-rates are also similar to those of sperm whale myoglobin. Resonance Raman data suggest hydrogen bonding stabilization of bound oxygen, evidenced by a relatively low frequency of Fe-OO stretching (563 cm(-1)). We propose that the oxy complex is an equilibrium mixture of a hydrogen-bonded closed structure and an open structure. Oxygen will dissociate preferentially from the open structure, and therefore, the fraction of open structure population controls the rate of oxygen dissociation. In the CO complex, the Fe-CO stretching frequency at 493 cm(-1) suggests an open heme pocket, which is consistent with the higher on- and off-rates for CO relative to those in myoglobin. A high rate of ligand binding is also consistent with the observation of an Fe-histidine stretching frequency at 220 cm(-1), indicating the absence of significant proximal strain. We postulate that the function of Paramecium Hb is to supply oxygen for cellular oxidative processes.  相似文献   

8.
The presence of at least two types of conformers in the ferrous CO complex of horseradish peroxidase has been demonstrated with the use of native and deuteroheme-substituted enzymes. Type I conformers, predominant in acidic pH, exhibited both an Fe-CO stretching and an Fe-C-O bending Raman line together with an infrared C-O stretch band below 1920 em-1. On the other hand, type II conformers, dominant species in alkaline pH, showed only an Fe-CO stretching Raman line with the C-O stretch above 1930 cm-1. They were interconvertible either by the changes in pH or by the binding of benzhydroxamate, a substrate for the enzyme. The pKa value for the pH-dependent interconversion of CO complex of deuteroheme-substituted enzyme was 8.3. These findings were interpreted to mean that the bound CO molecule in type I conformers was more tilted over the heme-plane than that in type II conformers. A steric hindrance by the bound substrate or the protonated form of a distal amino acid residue, presumably of histidine, is considered to be the cause for the isomerization. By summarizing present and previous data on the vibrational frequencies of heme-carbonyl complexes, we found that there are inverse-linear relationships between the square of Fe-CO and that of C-O stretching frequencies, while squares of Fe-CO stretching and Fe-C-O bending frequencies were linearly correlated with each other. Also found is that the dissociation rate constant of CO molecule from heme-carbonyl complexes is a linear function of the Fe-CO stretching frequency. The significance of these results is discussed.  相似文献   

9.
Resonance Raman spectra of Chromatium vinosum cytochrome c' have been obtained for the five pH-dependent states of the protein [i.e., types I (pH 7), II (pH 10), and III (pH 12) of the ferric protein and type a (pH 7) and type n (pH 12) of the ferrous protein]. The raman spectra of type II and type a are consistent with those of high-spin, 5-coordinate heme proteins, such as deoxyhemoglobin, while spectra of type III and type n correspond more closely to those of low-spin, ferric and ferrous cytochrome c, respectively. Spectra of the CO-bound equilibrium species qualitatively resemble those of carbon monoxy human HbA. However, both the Fe-C and C = O stretching modes of the ligated species exhibit pH-dependent frequency shifts. Our data also indicate that CO photolysis is much more efficient at pH 7 than at pH 12. Moreover, the spectra of the photolytic transients suggest that unique, high-spin species are formed subsequent to CO photolysis from both type a and type n species.  相似文献   

10.
M Nagai  Y Yoneyama  T Kitagawa 《Biochemistry》1989,28(6):2418-2422
Resonance Raman spectra of four hemoglobins (Hbs) M with tyrosinate ligand, that is, Hb M Saskatoon (beta distal His----Tyr), Hb M Hyde Park (beta proximal His----Tyr), Hb M Boston (alpha distal His----Tyr), and Hb M Iwate (alpha proximal His----Tyr), were investigated in order to elucidate structural origins for distinctly facile reducibility of the abnormal subunit of Hb M Saskatoon in comparison with other Hbs M. All of the Hbs M exhibited the fingerprint bands for the Fe-tyrosinate proteins around 1600, 1500, and 1270 cm-1. However, Hb M Saskatoon had the lowest Fe-tyrosinate stretching frequency and was the only one to display the Raman spectral pattern of a six-coordinate heme for the abnormal beta subunit; the others displayed the patterns of a five-coordinate heme. The absorption intensity of Hb M Saskatoon at 600 nm indicated a transition with a midpoint pH at 5.2, whereas that of Hb M Boston was independent of pH from 7.2 to 4.8. The fingerprint bands for the tyrosinate coordination as well as the Fe-tyrosinate stretching band disappeared for Hb M Saskatoon at pH 5.0, and the resultant Raman spectrum resembled that of metHb A, while those bands were clearly observed for Hb M Boston at pH 5.0 and for two Hbs M at pH 10.0. These observations suggest that the unusual characteristics of the heme in the abnormal beta chain of Hb M Saskatoon result from the weak Fe-tyrosinate bond, which allows weak coordination of the proximal histidine, giving rise to the six-coordinate high-spin state at pH 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
M Coppey  S Dasgupta  T G Spiro 《Biochemistry》1986,25(8):1940-1944
Resonance Raman spectroscopy shows the Fe-proximal imidazole stretching band to shift from 215 to 219 cm-1 between human deoxyhemoglobin (deoxy-Hb) and a Hb sample which is 75% oxygenated, demonstrating that the T-R quaternary structure switch can be monitored by resonance Raman spectroscopy in native Hb at equilibrium. For deoxy-Hb from carp, the band is at 215 cm-1 at pH 9 as well as pH 6, contrary to previous reports of an elevated frequency at high pH. The invariance of this frequency over a large affinity difference is in contrast to a recent report of continuously varying vFe-ImH frequencies for human mutant deoxy-Hb's. The band shifts to 219 cm-1 for carp Hb at pH 9 when O2 is bound to only 20% of the hemes. The spectra are consistent with a T-R switch upon binding approximately 0.5 O2 per Hb, on the average, although the number may be higher if the binding affinity is higher for alpha- than for beta-chains. The 0.5 value, in conjunction with the weak cooperativity observed for carp Hb at pH 9, is incompatible with a value of the allosteric constant, L = (T0)/(R0), large enough to prevent the vFe-ImH band from shifting detectably at pH 9 in the absence of O2. The possibility of functionally important intermediate structures is discussed.  相似文献   

12.
The resonance Raman spectra of the two affinity states of the CO-ligated monomeric insect hemoglobins, Chironomus thummi thummi (CTT) III ad IV, have been investigated. We have identified (via 54Fe/57Fe and 13C18O/12C16O isotope exchange) the Fe-N epsilon(His) stretching mode at approximately 317 cm-1. This stretching mode changes from 329 (pH 5.5) to 317 cm-1 (pH 9.5) reflecting the pH-induced t in equilibrium with r conformational transition. The Fe-CO stretching mode is also pH-sensitive changing from 483 (pH 5.2) to 485 cm-1 (pH 9.2) in 57Fe CTT III . 13C18O complex. However the C-O stretching mode is pH-insensitive. The nonallosteric monomeric insect hemoglobin CTT I does not exhibit a pH-dependence of these vibrational modes. pH-Induced effects were also observed for a vinyl bending mode at 379 cm-1 (pH 9.5) in CTT III deuterated at the beta-carbons of the vinyls in position 2 and 4. It shifts to 390 cm-1 at pH 5.5. The other vinyl vibration at 573 cm-1 exhibits intensity enhancement via through-space coupling with the Fe-C-O bending mode. Our resonance Raman data provide the first direct evidence that the trans-effect is operative as a trigger mechanism for ligand-binding in monomeric allosteric insect hemoglobins. In going from the low-affinity to the high-affinity state, the Fe-N epsilon(His) bond becomes weaker, whereas the Fe-CO bond becomes stronger.  相似文献   

13.
The amino acid sequence of the alpha-chain of trout hemoglobin (Hb) IV is given, thus completing the primary structure of the hemoglobin component of trout's blood characterized by the Root effect. The trout Hb IV alpha-chain consists of 142 amino acid residues; comparison with the corresponding sequences from human and carp hemoglobins shows differences of 50.0 and 35.9%, respectively. A difference of 39.6% is found with the alpha-chain of trout Hb I, the other major hemoglobin component of trout blood, devoid of heterotropic effects.  相似文献   

14.
This paper reports on a study of the effect of partial oxidation on oxygen and carbon monoxide binding by components I and IV of trout hemoglobin. The O2 binding equilibria of the various oxidation mixtures show a decrease in the heme-heme interactions as the number of oxidized sites is increased. However, the large Bohr effect, characteristic of Hb Trout IV, is maintained unchanged. Similarly the time course of CO combination changes on increasing the fractional oxidation, and the autocatalytic character of the CO binding kinetics is lost; however the pH dependence of the apparent "on" constant in the oxidation mixtures is similar to that characteristic of the native molecule. The results of the O2 equilibria and of CO binding kinetics may be interpreted in accordance with the two state concerted model suggesting that in the oxidation intermediates there is an increase in the fraction of the high affinity (R) conformation. Additional experiments on the effect of azide, and fluoride, ferric ligands which produce a change of spin state of the heme iron, suggest that additional second order conformational changes may also come into play.  相似文献   

15.
16.
We report an optical and EPR spectral study of three hemoglobins, Hb I, II, and III, from the gill of the clam Lucina pectinata. Hemoglobin I reacts much more avidly with hydrogen sulfide than do Hbs II and III. The proximal ligand to the heme iron of each hemoglobin is histidyl imidazole. The acid/alkaline transition of ferric Hb I occurs with pK 9.6; those of ferric Hbs II and III with pK 6.6 and 5.9, respectively. At their acid limits each ferric hemoglobin exists as aquoferric hemoglobin. Broadening of the g = 6 resonance suggests that the bound water enjoys great positional freedom. Ferric Hb I, at the alkaline limit (pH 11), exists as ferric hemoglobin hydroxide. Ferric Hbs II and III, at their alkaline limit (pH 7.5), each exist as equal mixtures of two species. The low spin species with optical maxima near 541 and 576 nm and g values of 2.61, 2.20, and 1.82, are identified as ferric hemoglobin hydroxide. The high spin species, with optical maxima near 486 and 603 nm and g values of 6.71, 5.87, and 5.06, resemble Dicrocoelium hemoglobin and hemoglobin MSaskatoon. Here we show that Hbs II and III resemble hemoglobin MSaskatoon in which a distal tyrosinate oxygen ligated to the ferric heme iron at alkaline pH is displaced by water at acid pH. The H2S product of ferric Hb I is identified as ferric hemoglobin sulfide.  相似文献   

17.
The carbomonoxy derivatives of hemoglobin A and S showed a different optical activity in the Soret region of the spectrum as measured by circular dichroism. Different optical activity was also measured in the carbomonoxy derivatives of the beta subunits of hemoglobin A and S, the respective deoxy derivatives showed different circular dichroism spectra only in the presence of inositol hexaphosphate. Sedimentation velocity experiments showed that the differences in optical activity are not due to a different state of aggregation of the subunits. Modification of the tertiary structure of the beta subunits seems to be responsible for the phenomenon. Speculation based on the work of Hsu and Woody (Hsu, M.C., and Woody, R.W. (1971) J. Am. Chem. Soc. 93, 3515-3525) suggests the involvement of the beta15 tryptophan in the conformational changes produced by the beta6 Glu-Val mutation in hemoglobin S.  相似文献   

18.
Carbon monoxide binding to a myoglobin mutant with distal arginine in place of histidine has been examined. The mutant is derived from a cDNA clone for Mb mRNA from fetal bovine skeletal muscle. The mutation only slightly perturbs visible/Soret spectra whereas the infrared spectrum of liganded CO is greatly modified to become nearly identical to Hb Zurich beta-subunit spectrum. The mutant IR spectra differ substantially from spectra of wild-type MbCO and normal HbCO beta-subunit. For both the Mb and the Hb the distal His----Arg mutation increases the affinity for CO and reduces the number of observed conformers. These results demonstrate that this mutation greatly reduces the differences between Mb and Hb in the structure and properties of its ligand binding sites.  相似文献   

19.
Heme pocket dynamics of human carbonmonoxy hemoglobin (HbCO) is studied by Fourier transform infrared spectroscopy. The CO stretching band at various temperatures in the interval 300-10 K is analyzed in terms of three taxonomic A substates; however, in HbCO the band attributed to the A(1) taxonomic substate accounts for approximately 90% of the total intensity in the pH range 8.8-4.5. Two different regimes as a function of temperature are observed: below 160 K, the peak frequency and the bandwidth of the A(1) band have constant values whereas, above this temperature, a linear temperature dependence is observed, suggesting the occurrence of transitions between statistical substates within the A(1) taxonomic substate in this protein. The relationship between the heme pocket dynamics (as monitored by the thermal behavior of the CO stretching band), the overall dynamic properties of the protein matrix (as monitored by the thermal behavior of Amide II and Amide I' bands) and the glass transition of the solvent (as monitored by the thermal behavior of the bending band of water) is also investigated. From this analysis, we derive the picture of a very soft heme pocket of hemoglobin characterized by rather large anharmonic terms and strongly coupled to the dynamic properties of the solvent.  相似文献   

20.
The heat of reaction of CO gas with the alpha2Mmetbeta2 and alpha2Mbeta2 species of the alpha-chain mutant hemoglobin M Iwate has been studied in buffers with different heats of ionization of 25degrees and in the absence of organic phosphates. For the alpha2Mmetbeta2deoxy species we find a small Bohr effect (0.12 mol of H+/mol of CO) which is in correspondence with that found in equilibrium studies. The heat of reaction, when corrected for proton reaction with buffer, is -18.4 +/- 0.3 kcal/mol of CO at pH 7.4 At pH 9 the same value is observed within experimental error. This value compares closely with heats of reaction of CO with myoglobin and with van't Hoff determinations of the heat of oxygen binding to isolated hemoglobin alpha and beta chains after correction for the heat of replacement of O2 by CO. Furthermore, an analysis of the differential heat of ligand binding as a function of the extent of reaction indicated that, within experimental error, the heat of reaction with the first beta-chain heme in alpha2Mmetbeta2deoxy is the same as the second. Since the quaternary Tleads to R transition is blocked in this mutant hemoglobin, we compared it with Hb A to estimate the enthalpic component of the allosteric T leads to R transition in Hb A. The heats of reaction with CO(g) and Hb A are -15.7 +/- 0.5 and -20.9 +/- 0.5 kcal/mol at pH 7.4 and 9.0, respectively. In going from the T to the R state we find an enthalpy of transition of 9 +/- 2.5 kcal at pH 7.4 and -12 +/- 2.5 kcal at pH 9.0. From published free energies of transsition we conclude the T leads to R transition is enthalpically controlled at p/ 7.4 but entropically controlled at pH 9.0 A near normal Bohr effect is estimated from heats of reaction of CO with alpha2Mdeoxybeta2deoxy in various buffers. A large than normal heat of reaction (-21.6 +/- 0.5 kcal/mol of CO) is attributed to the abnormal alpha chains in Hb M Iwate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号