首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell suspensions of H2/CO2-grown Sporomusa termitida catalyzed an H2-supported synthesis of acetate from CO2 at rates of about 1 mol acetate x h-1 x mg protein-1. Cells pre-grown on methanol, mannitol, lactate, or glycine also displayed H2-supported acetogenesis from CO2, although at rates 5–85% that of H2/CO2-grown cells. With methanol-grown cell suspensions: the presence of methanol greatly stimulated the rate of H2-supported conversion of 14CO2 to 14C-acetate (which became labeled mainly in the COOH-group); and like-wise the presence of H2 stimulated the conversion of 14CH3OH+CO2 to 14C-acetate (which became labeled mainlyan the CH3-group). Analogous stimulatory effects were observed for cell suspensions pre-grown on methanol + CO2+H2. Furthermore, when H2 (+CO2) was included as a growth substrate with either methanol or lactate: both substrates were used simultaneously; there was no diauxie in the growth of cells or in acetate production; and the molar growth yield of S. termitida was close to that predicted from summation of the yields observed when grown with each substrate alone. These data indicated that S. termitida can grow by mixotrophy, i.e. by the simultaneous use of H2/CO2 and organic compounds for energy. Results are discussed in light of the ability of H2/CO2 acetogens to outprocess methanogens in H2 consumption in the hindgut fermentation of wood-feeding termites.  相似文献   

2.
A previously undescribed, H2-oxidizing CO2-reducing acetogenic bacterium was isolated from gut contents of the wood-feeding termite, Pterotermes occidentis. Cells of representative strain APO-1 were strictly anaerobic, Gram-negative, endospore-forming motile rods which measured 0.30–0.40×6–60 m. Cells were catalase positive, oxidase negative, and had 51.5 mol percent G+C in their DNA. Optimum conditions for growth on H2+CO2 were at 30–33°C and pH (initial) 7.8, and under these conditions cells formed acetate according to the equation: 4 H2+2 CO2CH3COOH+2 H2O. Other energy sources supporting good growth of strain APO-1 included glucose, ribose, and various organic acids. Acetate and butyrate were major fermentation products from most organic compounds tested, however propionate, succinate, and 1,2-propanediol were also formed from some substrates. Based on comparative analysis of 16S rRNA nucleotide sequences, strain APO-1 was related to, but distinct from, members of the genus Sporomusa. Moreover, physiological and morphological differences between strain APO-1 and the six known species of Sporomusa were significant. Consequently, it is proposed herewith that a new genus, Acetonema, be established with strain APO-1 as the type strain of the new species, Acetonema longum. A. longum may contribute to the nutrition of P. occidentis by forming acetate, propionate and butyrate, compounds which are important carbon and energy sources for termites.  相似文献   

3.
Clostridium mayombei sp. nov., a previously undescribed H2-oxidizing CO2-reducing acetogenic bacterium, was isolated from gut contents of the African soilfeeding termite, Cubitermes speciosus. Cells were anaerobic, Gram positive, catalase and oxidase negative, endospore-forming motile rods which measured 1×2 – 6 m and which had a DNA base composition of 25.6 mol% G+C (strain SFC-5). Optimum conditions for growth on H2+CO2 were at 33°C and pH 7.3, and under these conditions cells produced acetate according to the equation: 4 H2+2 CO2CH3COOH+2 H2O. Other substrates supporting good growth included carbohydrates (e.g. glucose, xylose, starch), sugar alcohols, and organic and amino acids, and with these substrates acetate was almost always the principle fermentation product. Comparative analysis of 16S rRNA nucleotide sequences confirmed that C. mayombei was closely related to various members of the genus Clostridium. However, morphological and physiological differences between C. mayombei and other homoacetogenic clostridia were deemed significant enough to warrant creation of a new taxon. Results are discussed in light of the diversity of H2/CO2 acetogens recently isolated from various termites, and in terms of the relative importance of H2/CO2 acetogenesis to termite nutrition.  相似文献   

4.
A new genus of strictly anaerobic, gram-negative, banana-shaped bacteria is described. Cells formed spores and were motile by means of up to 15 laterally inserted flagella. Nitrate or sulfate were not used as electron acceptor. Organic substrates that were fermented included N-methyl compounds, such as betaine, N,N-dimethylglycine and sarcosine, primary alcohols, hydroxy fatty acids, and 2,3-butanediol. In addition, molecular hydrogen and carbon dioxide were fermented to acetate. The latter was the characteristic fermentation product in general. During growth on betaine, trimethylamine was formed in addition. The degradation of N,N-dimethylglycine yielded acetate, monomethylamine, and trimethylamine. The presence of cytochrome b and of ubiquinone in the cells was shown. The deoxyribonuleic acid base composition of the strains was between 41.3 and 47.4 mol% guanine plus cytosine. The name Sporomusa is proposed for this new genus. On the basis of the DNA-DNA homology values obtained, the shape of the spores and some other properties, the isolated strains were assigned to two species. Names proposed: Sporomusa sphaeroides and Sporomusa ovata. The type species is S. sphaeroides and the type strains are strain E, DSM 2875 (S. sphaeroides) and strain H1, DSM 2662 (S. ovata).Dedicated to Prof. H. G. Schlegel on the occasion of his 60th birthday  相似文献   

5.
Abstract A method is proposed that allows the enrichment and most probable number estimation of H2/CO2-utilizing acetogenic bacteria. It is based on the difference in acetate production for serial dilutions incubated under either a test H2/CO2 (4:1), or a control N2/CO2 (4:1) headspace atmosphere. A nutritionally non-selective medium was used, containing bromoethane-sulfonic acid as inhibitor of methanogenic archaea and 10% pre-incubated clarified rumen fluid. Acetogenic bacteria were enumerated in rumen and hindgut contents of animals and in human feces. They ranged from below 102 to above 108 per gram wet weight gut content and their population levels were the highest in the absence of methanogenesis. The method described therein should prove useful to better understand the diversity and ecological importance of dominant gut acetogens.  相似文献   

6.
A new strictly anaerobic bacterium was isolated from an enrichment culture with glutarate as sole substrate and freshwater sediment as inoculum, however, glutarate was not metabolized by the pure culture. The isolate was a mesophilic, spore-forming, Gram-negative, motile curved rod. It fermented various organic acids, alcohols, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. Other acids were fermented to acetate and propionate or acetate and butyrate. Succinate and malonate were decarboxylated to propionate or acetate, respectively, and served as sole sources of carbon and energy for growth. No inorganic electron acceptors except CO2 were reduced. Yeast extract (0.05% w/v) was required for growth. Small amounts of cytochrome b were detected in membrane fractions. The guanine-plus-cytosine content of the DNA was 44.1±2 mol%. The isolate is described as a new species of the genus Sporomusa, S. malonica.  相似文献   

7.
As part of a study carried out for detecting Arcobacter spp. in shellfish, three mussel isolates that were Gram-negative slightly curved rods, non-spore forming, showed a new 16S rDNA-RFLP pattern with a specific identification method for the species of this genus. Sequences of the 16S rRNA gene and those of the housekeeping genes rpoB, gyrB and hsp60 provided evidence that these mussel strains belonged to an unknown genetic lineage within the genus Arcobacter. The similarity between the 16S rRNA gene sequence of the representative strain (F79-6T) and type strains of the other Arcobacter species ranged between 94.1% with A. halophilus and 99.1% with the recently proposed species A. defluvii (CECT 7697T). DDH results between strain F79-6T and the type strain of the latter species were below 70% (53 ± 3.0%). Phenotypic characteristics together with MALDITOF mass spectra differentiated the new mussel strains from all other Arcobacter species. All the results indicate that these strains represent a new species, for which the name Arcobacter ellisii sp. nov. with the type strain F79-6T (=CECT 7837T = LMG 26155T) is proposed.  相似文献   

8.
A new H2/CO2-utilizing acetogenic bacterium was isolated from the feces of a non-methane-excreting human subject. The two strains S5a33 and S5a36 were strictly anaerobic, gram-positive, non-sporulating coccobacilli. The isolates grew autotrophically by metabolizing H2/CO2 to form acetate as sole metabolite and were also able to grow heterotrophically on a variety of organic compounds. The major end product of glucose and fructose fermentation was acetate; the strains also formed ethanol, lactate and, to a lesser extent, isobutyrate and isovalerate. The G+C content of DNA of strain S5a33 was 45.2 mol%. 16S rRNA gene sequencing demonstrated that the two acetogenic isolates were phylogenetically identical and represent a new subline within Clostridium cluster XIVa. Based on phenotypic and phylogenetic considerations, a new species, Ruminococcus hydrogenotrophicus, is proposed. The type strain of R. hydrogenotrophicus is S5a33 (DSM 10507). Furthermore, H2/CO2 acetogenesis appeared to be a common property of most of the species phylogenetically closely related to strain S5a33 (Clostridium coccoides, Ruminococcus hansenii, and Ruminococcus productus). Received: 11 April 1996 / Accepted: 11 June 1996  相似文献   

9.
Three strains of new acetogenic bacteria were isolated from several low temperature environments. Cells were gram-positive, oval-shaped flagellated rods. The organisms fermented H2/CO2, CO, formate, lactate, and several sugars to acetate. Strains Z-4391 and Z-4092 grew in the temperature range from 1 to 30°C with an optimum at 20°C; strain Z-4290 grew in the range from 1 to 35°C with an optimum at 30°C. The DNA G+C content of strains Z-4391, Z-4092, and Z-4290 was 42.1, 41.7, and 45.8 mol% respectively.  相似文献   

10.
In this study two actinomycete strains were isolated in Cape Town (South Africa), one from a compost heap (strain 202GMOT) and the other from within the fynbos-rich area surrounded by the horseracing track at Kenilworth Racecourse (strain C2). Based on 16S rRNA gene sequence BLAST analysis, the strains were identified as members of the genus Nocardia. Phylogenetic analysis showed that the strains clustered together and are most closely related to Nocardia flavorosea NRRL B-16176T, Nocardia testacea JCM 12235T, Nocardia sienata IFM 10088T and Nocardia carnea DSM 43397T. This association was also supported by gyrB based phylogenetic analysis. The results of DNA–DNA hybridization and physiological tests allowed genotypic and phenotypic differentiation of both strains 202GMOT and C2 from related species. However, their high DNA relatedness showed that they belong to the same species. Strain 202GMOT was selected as the type strain to represent this novel species, for which the name Nocardia rhamnosiphila is proposed (=DSM 45147T = NRRL B-24637T).  相似文献   

11.
Flavobacterium frigidimaris sp. nov., isolated from Antarctic seawater   总被引:1,自引:0,他引:1  
We described the polyphasic characterization of the psychrotolerant isolated from Antarctic seawater. The strain was closely related to Flavobacterium hydatis, F. pectinovorum, and F. saccharophilum on the basis of the 16S rDNA sequence analysis. However, DNA–DNA hybridization experiments showed that the DNA-similarities between strain KUC-1T and the reference strains of Flavobacterium were less than 30%. Therefore, we can definite a new species of Flavobacterium phylogenetically, and strain KUC-1T can be considered to be a new species of Flavobacterium. i.e. F. frigidimaris (KUC-1T: JCM 12218T and DSM 15937T; mol% G+C of DNA of the type strain is 34.5 mol%). Useful phenotypical features for discrimination of F. frigidimaris from other Flavobacterium species, such as a resistance to NaCl, optimum growth temperature, and cellular fatty acid composition, were also determined.  相似文献   

12.
A gram-positive, motile, rod-shaped, strictly anaerobic, sporulating bacterium was isolated from an enrichment initiated with mullet gut contents. The organism grew optimally at 30°C and pH6.5, and at a salinity of 1–103. Out of a variety of polysaccharides tested as growth substrates, only alginate supported growth in either semidefined or complex culture medium. The organism also grew on a variety of mono- and disaccharides. Moles product per 100mol of alginate monomer degraded were: acetate, 186; ethanol, 19; formate, 54; and CO2, 0.19. Moles product per 100mol of hexose in cellobiose or glucose degraded were: acetate, 135; ethanol,61; formate, 63: and CO2, 61. Hydrogen was not detectable during the incubations (detection limit, <10-5atm) and propionate, butyrate, lactate, or succinate were not produced as fermentation end products (<2 mol per 100 mol of monomer). The G+C content of DNA from the bacterium was 30.2±0.3 mol%, and the cell walls contained the peptidoglycan component meso-diaminopimelic acid. A phylogenetic analysis of the 16S rDNA sequence indicated that the organism grouped closely with members of the RNA-DNA homology group 1 of the genus Clostridium. However, it differed from other species of the genus with regard to morphology, growth temperature optimum, substrate range, and fermentation pattern and is therefore designated as a new species of Clostridium; the type strain is A-1 (DSM 8605).  相似文献   

13.
In a taxonomic study on the ascomycetous yeasts isolated from plant materials collected in tropical forests in Yunnan and Hainan Provinces, southern China, four strains isolated from tree sap (YJ2E(T)) and flowers (YF9E(T), YWZH3C(T) and YYF2A(T)) were revealed to represent four undescribed yeast species. Molecular phylogenetic analysis based on the large subunit (26S) rRNA gene D1/D2 domain sequences showed that strain YJ2E(T) was located in a clade together with Candida haemulonii and C. pseudohaemulonii. Strain YF9E(T) was most closely related to C. azyma and strain YWZH3C(T) to C. sorbophila and C. spandovensis. Strain YYF2A(T) was clustered in a clade containing small-spored Metschnikowia species and related anamorphic Candida species. The new strains differed from their closely related described species by more than 10% mismatches in the D1/D2 domain. No sexual states were observed for the four strains on various sporulation media. The new species are therefore assigned to the genus Candida and described as Candida alocasiicola sp. nov. (type strain, YF9E(T) = AS 2.3484(T) = CBS 10702(T)), Candida hainanensis sp. nov. (type strain, YYF2A(T) = AS 2.3478(T) = CBS 10696(T)), Candida heveicola sp. nov. (type strain, YJ2E(T) = AS 2.3483(T) = CBS 10701(T)) and Candida musiphila sp. nov. (type strain, YWZH3C(T) = AS 2.3479(T) = CBS 10697(T)).  相似文献   

14.
Three novel isolates of haloalkaliphilic archaea, strains IHC-005T, IHC-010, and N-1311T, from soda lakes in Inner Mongolia, China, were characterized to elucidate their taxonomic positions. The three strains were aerobic, Gram-negative chemoorganotrophs growing optimally at 37–45°C, pH 9.0–9.5, and 15–20% NaCl. Cells of strains IHC-005T/IHC-010 were motile rods, while those of strain N-1311T were non-motile pleomorphic flats or cocci. The three strains contained diphytanyl and phytanyl-sesterterpanyl diether derivatives of phosphatidylglycerol and phosphatidylglycerophosphate methyl ester. No glycolipids were detected. On phylogenetic analysis of 16S rRNA gene sequences, they formed an independent cluster in the Natro group of the family Halobacteriaceae. Comparison of their morphological, physiological, and biochemical properties, DNA G+C content and 16S rRNA gene sequences, and DNA-DNA hybridization study support the view that strains IHC-005T/IHC-010 and strain N-1311T represent separate species. Therefore, we propose Natronolimnobius baerhuensis gen. nov., sp. nov. for strains IHC-005T (=CGMCC 1.3597T =JCM 12253T)/IHC-010 (=CGMCC 1.3598=JCM 12254) and Natronolimnobius innermongolicus sp. nov. for N-1311T (=CGMCC 1.2124T =JCM 12255T).  相似文献   

15.
A Gram-negative bacterium designated AC-74(T) was isolated from a highly alkaline groundwater environment (pH 11.4). This organism formed rod-shaped cells, is strictly aerobic, catalase and oxidase positive, tolerates up to 3.0% NaCl, has an optimum growth temperature of 30 degrees C, but no growth occurs at 10 or 40 degrees C, and an optimum pH value of 8.0, but no growth occurs at pH 7.0 or 11.3. The predominant fatty acids are iso-15:0, iso-17:1 omega9c and 16:1 omega7c and or iso-15:2OH. The G+C content of DNA was 43.5mol%. The phylogenetic analyses of the sequences of the 16s RNA genes indicated that strain AC-74(T) belongs to the family "Flexibacteriaceae" and is phylogenetically equidistant ( approximately 94.5%) from the majority of the species of the genus Algoriphagus and from the genus Hongiella. Based on the phylogenetic analyses and distinct phenotypic characteristics, we are of the opinion that strain AC-74(T), represents a new species of the novel genus for which we propose the name Chimaereicella alkaliphila gen. nov., sp. nov.  相似文献   

16.
A new group of anaerobic thermophilic bacteria was isolated from enrichment cultures obtained from deep sea sediments of Peru Margin collected during Leg 201 of the Ocean Drilling Program. A total of ten isolates were obtained from cores of 1–2 m below seafloor (mbsf) incubated at 60°C: three isolates came from the sediment 426 m below sea level with a surface temperature of 9°C (Site 1227), one from 252 m below sea level with a temperature of 12°C (Site 1228), and six isolates under sulfate-reducing condition from the lower slope of the Peru Trench (Site 1230). Strain JW/IW-1228P from the Site 1228 and strain JW/YJL-1230-7/2 from the Site 1230 were chosen as representatives of the two identified clades. Based on the 16S rDNA sequence analysis, these isolates represent a novel group with Thermovenabulum and Caldanaerobacter as their closest relatives. The temperature range for growth was 52–76°C with an optimum at around 68°C for JW/IW-1228P and 43–76°C with an optimum at around 64°C for JW/YJL-1230-7/2. The pH25C range for growth was from 6.3 to 9.3 with an optimum at 7.5 for JW/IW-1228P and from 5 to 9.5 with an optimum at 7.9–8.4 for JW/YJL-1230-7/2. The salinity range for growth was from 0% to 6% (w/v) for JW/IW-1228P and from 0% to 4.5% (w/v) for JW/YJL-1230-7/2. The G+C content of the DNA was 50 mol% for both JW/IW-1228P and JW/YJL-1230-7/2. DNA–DNA hybridization yielded 52% similarity between the two strains. According to 16S rRNA gene sequence analysis, the isolates are located within the family, Thermoanaerobacteriaceae. Based on their morphological and physiological properties and phylogenetic analysis, it is proposed that strain JW/IW-1228PT is placed into a novel taxa, Thermosediminibacter oceani, gen. nov., sp. nov. (DSM 16646T=ATCC BAA-1034T), and JW/YJL-1230-7/2T into Thermosediminibacter litoriperuensis sp. nov. (DSM 16647T =ATCC BAA-1035T).An erratum to this article can be found at  相似文献   

17.
Three bacterial strains isolated from oysters recovered at the Spanish Mediterranean coast have been phenotypically and genetically characterized. The results of the phylogenetic analysis based on almost complete 16S rDNA sequences clustered all three strains together with 99.9% average sequence similarity and situated them in the neighbourhood of the genera Stappia, Roseibium and Pannonibacter, Stappia aggregata being their closest neighbour with sequence similarities between 98.8% and 98.9%. DNA-DNA hybridization experiments using DNA of strains 5OM6T and S. aggregata CECT 4269T as reference DNAs confirmed the independent status at species level of the oyster isolates. Phenotypically, they can be distinguished from the closest relatives by the ionic requirements, growth temperatures and use of carbon compounds. We propose these oyster strains constitute a new species of Stappia, for which the name Stappia alba sp. nov. has been chosen, and strain 5OM6T (= CECT 5095T = CIP 108402T) as its type strain.  相似文献   

18.
Four yellow-pigmented, gram-negative, chemoorganotrophic aerobic bacteria were isolated from starfish Stellaster equestris (strains 022-2-10T, 022-2-9, and 022-2-12) and soft coral (unidentified species) (strain 022-4-7) collected in the South China Sea. 16S rRNA gene sequence-based analyses of the new organisms revealed that Erythrobacter spp. were the closest relatives and shared the highest similarity of 98.7% to E. citreus, 98.5% to E. flavus, 97.9% to E. litoralis and 97.6% to E. longus. The novel organisms were tolerant to 3-6% NaCl, grew between 10 degrees C and 40 degrees C, and were not able to degrade gelatin, casein, and agar, while degraded Tween 80. Two strains (022-2-9 and 022-2-12) could weakly degrade starch. All strains produced a large pool of carotenoids and did not have Bacteriochlorophyll a. Phosphatidylethanolamine (30-36%), phosphatidylglycerol (39-46%), and phosphatidylcholine (21-27%) were the predominant phospholipids. Sphingoglycolipid was not detected. The major fatty acids were 16:0 (6-11%), 16:1omega7 (12-15%), and 18:1omega7 (46-49%). The two-hydroxy fatty acids, 13:0-2OH, 14:0-2OH, 15:0-2OH, 16:0-2OH were also present. The G + C content of the DNAs ranged from 61 to 62 mol%. The level of DNA similarity among four strains was conspecific and ranged from 94% to 98%. Even though new strains and other species of the genus had rather high level of 16S rRNA gene sequence similarities, DNA-DNA hybridization experiments showed only 33-39% of binding with the DNA of the type strains. On the basis of these results and the significant differences demonstrated in the phenotypic and chemotaxonomic characteristics, it is suggested that the new organisms be classified as a novel species; the name Erythrobacter vulgaris sp. nov. is proposed. The type strain is 022-2-10T (= KMM 3465T = CIP 107841T).  相似文献   

19.
The characterization of three bacterial strains isolated from cultured oysters and seawater at the Spanish Mediterranean coast has been performed. Strains were phenotypically and genetically characterized and the results led us to identify them as members of the genus Marinomonas. A phylogenetic analysis based on the almost complete 16S rDNA sequences clustered all three strains together (with sequence similarities around 99.8%) in the vicinity of M. communis and M. vaga sequences and distantly related to the other four species of the genus. The most closely related species was M. communis that shared 97.4-97.6% with the Mediterranean strains. DNA-DNA hybridizations were performed to clarify the taxonomic position of our isolates and the results confirmed their specific isolation, with interspecific binding ratios below 59%. We propose the bacteria to constitute a new Marinomonas species, i.e. M. aquamarina and strain 11SM4T (CECT 5080T, CIP 108405T, CCUG 49439T) as the type strain.  相似文献   

20.
A new mesophilic sulphate-reducing bacterium, designated strain DvO5(T) (T=type strain), was isolated from the outermost sulphate reduction-positive most-probable-number tube (10(-6) dilution) of an activated sludge sample, which had been oxygenated at 100% air saturation for 120 h. The motile, Gram-negative, curved 1 by 2-5 microm and non-spore-forming cells of strain DvO5(T) existed singly or in chains. Strain DvO5(T) grew optimally at 29 degrees C, pH 6.9 and 0.05% (w/v) NaCl in a medium containing lactate, sulphate and yeast extract. Sulphite, thiosulphate and elemental sulphur also served as electron acceptors whereas nitrate, nitrite or ferric iron were not reduced. Lactate, pyruvate, H(2) (with acetate as carbon source), ethanol and glycerol efficiently supported growth as electron donors. Pyruvate and malate were fermented. Strain DvO5(T) reduced oxygen by oxidising endogenous polyglucose at rates ranging from 0.4 to 6.0 nmol O(2)/mg protein min depending on the oxygen concentration, the highest rates being observed at atmospheric oxygen saturation. The G+C content of the DNA was 57.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DvO5(T) was a member of the genus Desulfovibrio with D. magneticus (98.2% 16S rRNA gene sequence similarity) and D. burkinensis (97.5% 16S rRNA gene sequence similarity) being its closest relatives among validly described species. A similar phylogenetic affiliation was obtained by sequence analyses of the genes encoding the alpha and the beta subunit of dissimilatory sulphite reductase (dsrAB) as well as the alpha subunit of adenosine-5'-phosphosulphate reductase (apsA) of strain DvO5(T). On the basis of genotypic and phenotypic characteristics, strain DvO5(T) (DSM 16695(T), JCM 12613(T)) is proposed as the type strain of a new species, Desulfovibrio aerotolerans sp. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号