共查询到20条相似文献,搜索用时 0 毫秒
1.
T. da Silva Rascado B. Watanabe Minto F. da Cruz Landim-Alvarenga 《Theriogenology》2010,74(4):596-601
The objective was to evaluate the parthenogenetic activation of domestic cat oocytes. Cumulus-oocyte complexes matured for 36 h were subjected to three protocols of parthenogenetic activation: Group 1 - ionomycin + cycloheximide; Group 2 - ionomycin + roscovitine; and Group 3 - ionomycin + strontium. As a control, a fourth group of oocytes were cultured in the absence of any activation agent. In all groups, embryos were cultured in SOFaa for 72 h after activation and evaluated for activation rate, cleavage, and embryonic development using Hoechst33342. There were no significant differences among the three treated groups for rates of activated oocytes (70.1 ± 4.3, 75.5 ± 4.7, and 61.9 ± 7.2%, for Treatments 1, 2, and 3 respectively; mean ± SEM), or cleavage (48.1 ± 5.9, 47.4 ± 3.8, and 33.3 ± 6.8%). However, activation and cleavage rates were higher (P < 0.05) than those in the control group (35.5 ± 6.4 and 11.8 ± 4.0%). There were no significant differences among treatment groups for proportion of embryos with 2-10 cells, 10-16 cells, and morulas. In the Control group, the embryo production rate was lower (P < 0.05), although the activation rate was high. The authors concluded that all three treatments effectively induced parthenogenetic activation of domestic cat oocytes. However, to optimize the use of strontium and roscovitine, a dose response and the effect of the presence of Ca++ in the medium requires further study. 相似文献
2.
Pablo J Ross Zeki Beyhan Amy E Iager Sook-Young Yoon Christopher Malcuit Karl Schellander Rafael A Fissore Jose B Cibelli 《BMC developmental biology》2008,8(1):16
Background
During natural fertilization, sperm fusion with the oocyte induces long lasting intracellular calcium oscillations which in turn are responsible for oocyte activation. PLCZ1 has been identified as the factor that the sperm delivers into the egg to induce such a response. We tested the hypothesis that PLCZ1 cRNA injection can be used to activate bovine oocytes. 相似文献3.
Chemical activation of parthenogenetic and nuclear transfer porcine oocytes using ionomycin and strontium chloride 总被引:5,自引:0,他引:5
Effective protocols for oocyte activation are crucial for study of parthenogenetic development and to produce nuclear transfer reconstructed embryos. This study investigated the use of ionomycin (ION) and strontium chloride (Sr(2+)) in the activation of parthenogenetic and nuclear transfer porcine oocytes. In-vitro-matured oocytes with a polar body were treated with varying concentrations of ION, Sr(2+) or its combinations, and then fixed or cultured to assess activation and development rates, respectively. Ionomycin concentrations of 10 and 15 microM resulted in more frequent oocyte activation and the 15 microM in advanced development compared to 5 microM (71.8 and 70%vs. 47.5%; P=0.04, and 43.7%vs. 19.3%; P=0.008, respectively). Oocytes treated with 10, 20 or 30 mM of Sr(2+) for 2 or 4h displayed a pronuclear formation rate ranging from 46.7 to 70%. When employed after a 5 min treatment with 10 or 15 microM ION, exposure to 10 mM Sr(2+) for 4 h resulted in higher pronuclear formation than did the 20 mM concentration (82 and 88.6%vs. 63.3 and 73.2%; P=0.03). Nuclear transfer reconstructed oocytes treated with 15 microM/5 min ION followed by 10 mM/4 h Sr(2+) resulted in a higher development to blastocyst stage compared to those treated with 15 microM ION alone (17.7 vs. 11.3%; P=0.06). In conclusion, we inferred that the inclusion of Sr(2+) in the activation protocol can benefit the development of nuclear transfer reconstructed porcine oocytes. 相似文献
4.
Parthenogenetic development of porcine oocytes treated by ethanol, cycloheximide, cytochalasin B and 6-dimethylaminopurine 总被引:9,自引:0,他引:9
This study was carried out to investigate the various concentrations and exposure times of ethanol, one of many intracellular calcium elevating agents, and a sequential combination of ethanol (8%), cycloheximide (CHX, 10 microg/ml), cytochalasin B (CCB, 7.5 microg/ml) and 6-dimethylaminopurine (6-DMAP, 2 mM) to improve parthenogenetic activation and development of in vitro matured porcine oocytes. Cumulus-oocyte complexes (COCs) were matured in tissue culture medium (TCM) 199 for 44 h at 38.5 degrees C, 5% CO2 in air. Cumulus-free oocytes showing first polar body were activated by concentrations of 0, 5, 6, 7, 8, 9 and 10% ethanol for 10 min and exposure times of 0, 5, 8, 10, 12 and 15 min with 8% ethanol in HEPES buffered (25 mM) NCSU-23 medium. Also, oocytes were activated with the NCSU-23 medium containing 8% ethanol for 10 min. After that, oocytes were incubated in the NCSU-23 medium supplemented with CHX, CCB, 6-DMAP, CHX + CCB, CHX + 6-DMAP, CCB + 6-DMAP and CHX + CCB + 6-DMAP for 3h, respectively. Following activation, oocytes were transferred into the NCSU-23 medium containing 0.4% BSA for further culture of 20 and 144 h at 38.5 degrees C, 5% CO2 in air. The activation rates of oocytes were higher in 6, 7 and 8% ethanol concentrations compared with 0, 5, 9 and 10% ethanol concentrations. Significantly, more oocytes (29.3-33.7%) were activated in the exposure for 8, 10, 12 and 15 min than those in the exposure for 0 and 5 min, but there was no difference due to exposure to 8% ethanol for 8-15 min. Oocytes treated by chemical agents (40.5-70.5%) after exposure to ethanol significantly improved the rate of oocyte activation compared with ethanol alone (31.2%). The percentage of cleaved oocytes was higher in the ethanol+CHX+CCB+6-DMAP treatment (66.4%) than in other treatments (24.9-57.6%). Also, the rate of blastocyst formation was higher in the ethanol+CHX+CCB+6-DMAP treatment (25.0%) than in other treatments (0.0-19.3%). In conclusion, the optimal activation treatment of ethanol exposure alone for the in vitro matured porcine oocytes was 8% ethanol for 8-15 min. Oocytes activated by 8% ethanol for 10 min and incubated in the NCSU-23 medium supplemented with CHX, CCB and 6-DMAP for 3 h were more efficient for parthenogenetic development of in vitro matured porcine oocytes. 相似文献
5.
The effect of hyaluronidase (0.3%) and killed bull spermatozoa on the parthenogenetic activation of cow oocytes matured in vitro until metaphase II was studied. It is shown that hyaluronidase, killed spermatozoa, and both agents in combination activate 3.4, 15.0 and 29.6% oocytes, respectively. 相似文献
6.
The purpose of this study was to determine the optimal conditions for parthenogenetic activation of in vitro-matured bovine oocytes by electric stimulus in vitro. Oocytes were assigned to a factorial treatment structure with direct current ranging from 0.5 to 1 KW/cm for 25 to 100musec and single or double pulses. The optimal conditions for activation were found to be direct current pulses of 1 KV for 25 musec x 2, under which 84% of stimulated oocytes formed one (70%), two (13%) or three (2%) pronuclei. When the stimulated oocytes were incubated in a culture medium containing cytochalasin B, 80% of the oocytes formed two pronuclei. A proportion of the parthenogenetic oocytes developed to the two-cell stage or higher (27%, 83 312 ) in vitro; however, this was significantly (P<0.001) lower than that of the oocytes fertilized in vitro (46%, 736 1608 ). 相似文献
7.
Parthenogenetic activation of mouse oocytes by strontium chloride: a search for the best conditions 总被引:7,自引:0,他引:7
Ma SF Liu XY Miao DQ Han ZB Zhang X Miao YL Yanagimachi R Tan JH 《Theriogenology》2005,64(5):1142-1157
Strontium has been successfully used to induce activation of mouse oocytes in nuclear transfer and other experiments, but the optimum treatment conditions have not been studied systematically. When cumulus-free oocytes were treated with 10mM SrCl(2) for 0.5-5h, activation rates (88.4+/-4.1 to 91.2+/-2.7%) did not differ (mean+/-S.E.; P>0.2), but rate of blastulation (57.3+/-3.5%) and cell number per blastocyst (45.0+/-2.4) were the highest after treatment for 2.5h. When treated with 1-20mM SrCl(2) for 2.5h, the activation rate and cell number per blastocyst were higher (P<0.02) after 10mM SrCl(2) treatment than other treatments. The best activation and development were obtained with Ca(2+)-free Sr(2+) medium, but the activation rate was low (37.7+/-1.6%) in Ca(2+)-containing medium. Activation rates were the same, regardless of the presence or absence of cytochalasin B (CB) in the activating medium, but the blastulation rate was higher (P<0.001) in the presence of CB. Only 70% of the cumulus-enclosed oocytes were activated and 10% blastulated after a 10 min exposure to 1.6mM SrCl(2), and many lysed, with increased intensity of Sr(2+) treatment. The presence of CB in SrCl(2) medium markedly reduced lysis of cumulus-enclosed oocytes. Media M16 and CZB did not differ when used as activating media. Only 10.5% of the oocytes collected 13 h post hCG were activated by Sr(2+) treatment alone, with 34% blastulating, but rates of activation and blastulation increased (P<0.001) to 94 and 60%, respectively, when they were further treated with 6-dimethylaminopurine (6-DMAP). The total and ICM cell numbers were less (P<0.001) in parthenotes than in the in vivo fertilized embryos. In conclusion, the concentration and duration of SrCl(2) treatment and the presence or absence of CB in activating medium and cumulus cells had marked effects on mouse oocyte activation and development. To obtain the best activation and development, cumulus-free oocytes collected 18 h post hCG should be treated for 2.5h with 10mM SrCl(2) in Ca(2+)-free medium supplemented with 5 microg/mL of CB. 相似文献
8.
Cysteamine, glutathione and ionomycin treatments improve in vitro fertilization of prepubertal goat oocytes 总被引:2,自引:0,他引:2
The aim of this study was to improve in vitro embryo development of prepubertal goat oocytes by studying the effect of adding cysteamine to in vitro maturation medium, glutathione (GSH) to in vitro fertilization medium and ionomycin to the sperm capacitation medium. In experiment 1, we analysed the effect of 1 mM GSH added to fertilization medium of oocytes matured with 400 microM cysteamine. The control group were oocytes without cysteamine and GSH. In experiment 2, oocytes matured and fertilized in the presence of 400 microM cysteamine and 1 mM GSH, respectively, were inseminated with spermatozoa treated with ionomycin or heparin. In experiment 1, the percentages of total and normal fertilized oocytes were significantly higher for oocytes supplemented with cysteamine and GSH (40.26% and 30.20%, respectively) than for oocytes from the control group (16.66%, and 10.61%, respectively). The percentage of total embryos obtained after 7 days of culture was significantly higher in the group supplemented with cysteamine and GSH (30.62%) than in the control group (8.09%). In experiment 2, percentages of total and normal fertilized oocytes were significantly higher for the group of spermatozoa capacitated with ionomycin (52.21% and 37.17%, respectively) than with heparin (38.62% and 28.35%, respectively). After 7 days of culture, total embryo rate was significantly higher in the group of sperm capacitated with ionomycin (44.91%) than with heparin (38.69%). However, the percentage of embryos developed to the blastocyst stage was not affected by any of the treatments studied. 相似文献
9.
6—DMAP对小鼠卵母细胞减数分裂启动及孤雌发育作用 总被引:3,自引:0,他引:3
小鼠卵泡卵母细胞体外培养过程中加入2mmol/L6-DMAP可抑制卵母细胞自发的染色持浓缩和生发泡破裂(GVBD)。源自超排的MⅡ期卵母细胞则能为6-DMAP所激活。hCG注射后18-19h的卵母细胞置于2mmol/L6-DMAP的CZB溶液中培养0.5h、1h、2h、3h,卵母细胞的激活率分别为26.1%、75.2%、75.8%、77.3%、卵裂率分别为88.2%、73.2%、67.0%、58. 相似文献
10.
Cell-cycle phase of the donor and recipient cells at the moment of nuclear transfer influences subsequent development of the reconstituted embryo. In order to study this effect, the precise cell-cycle phase of the recipient oocyte at the time of fusion must be known and this depends on reliable activation of oocytes in a protocol that has a low incidence of spontaneous activation. Mouse oocytes recovered before (8-10 hours post-human chorionic gonadotropin [hCG]) and after ovulation (14 and 18 hours post-hCG) were exposed to strontium ions in calcium magnesium-free M16 culture medium. The effect on development of haploid parthenotes of post-hCG age of the oocyte, the duration of exposure, and strontium concentration in the medium was determined. These experiments established a reliable method of parthogenetic activation of recently ovulated mouse oocytes, involving the culture of oocytes for 60 minutes in 25 mM strontium in a calcium magnesium-free M16 medium. This method of activation was also able to induce activation of preovulatory oocytes after a preincubation period in vitro. Only a low incidence of spontaneous activation was observed if oocytes were recovered before or immediately after ovulation (14 hours after hCG). 相似文献
11.
Mature porcine oocytes are arrested at metaphase II of meiosis. At fertilization, like all mammalian oocytes they exhibit a low frequency Ca(2+) oscillation lasting several hours. This oscillation is thought to be the signal that triggers resumption of meiosis and activates the developmental program of the oocyte. The signal transduction mechanism of the sperm-induced Ca(2+) signal is not known in detail, and attempts to generate the oscillation artificially have met with little success. Nevertheless, artificial activation of the oocyte is a crucial step during nuclear transfer. Methods are available to induce a transient elevation in the intracellular free Ca(2+) concentration to surpass the meiotic arrest and induce development of the constructed embryo. Further studies concentrating on the mechanism of Ca(2+) signaling during fertilization will help to improve the efficiency of the procedures used for parthenogenetic activation of the oocyte. 相似文献
12.
The objective of this study was to evaluate parthenogenetic activation of domestic cat oocytes after being exposed to either ethanol, magnetic field, calcium ionophore A23187, or cycloheximide and a combination of these agents. We also wished to evaluate the usefulness of the magnetic field for oocyte activation. In vitro matured oocytes subjected to artificial activation were randomly assigned into eight groups according to activating agents: (1) 10% ethanol; (2) the magnetic field (slow-changing, homogenous magnetic field with low values of induction); (3) 10% ethanol plus magnetic field; (4) 10 microM calcium ionophore A23187; (5) 10 microM calcium ionophore A23187 plus magnetic field; (6) 10% ethanol and 10 microg/mL of cycloheximide; (7) 10% ethanol and 10 microg/mL of cycloheximide plus magnetic field; (8) oocytes were not exposed to any of the activating agents. After activation oocytes were stained with Hoechst 33258 and parthenogenetic activation was defined as oocytes containing pronuclei and second polar bodies or two to four or six nuclei (embryonic cleavage). The total activation rate by using different activation treatments was 40%. The addition of the magnetic field to ethanol or calcium ionophore treatments resulted in increased parthenogenetic activation rates from 47% to 75%, and from 19% to 48%, respectively (P<0.001). Instead, when the magnetic field was added to ethanol and cycloheximide treatment, activation rate decreased from 48% to 30%. Oocytes activated with magnetic field only gave the lowest activation rate (12%). We concluded that a magnetic field can be used as an activating agent, and the combination of ethanol and magnetic field is an effective method for domestic cat oocyte activation. 相似文献
13.
Bovine oocytes matured in vitro for 26 hours were electrically stimulated 1) by a single pulse (Treatment A); 2) by 3 pulses 30 minutes apart (Treatment B); 3) by a single pulse followed by 5 minutes of incubation in the stimulation medium (Treatment C); or 4) by a single pulse at 27 hours of maturation (Treatment D). The oocytes were then cultured for up to 8 days to assess parthenogenetic activation and development. Each electrical stimulation consisted of a 60-mus square wave pulse of 2.5 or 3.6 kV/cm. Treatment A was less effective than the other treatments (P<0.05), activating 47 or 59% of oocytes at 2.5 or 3.6 kV/cm, respectively. However, there were no differences due to voltage nor among the other treatments, which activated 64 to 78% of the oocytes. The cleavage rate, 28 to 38%, was not affected by the activation treatment, but development to the 8-cell stage or beyond was greater after activation with the higher voltage. While the numbers of morulae or blastocysts resulting from any given treatment were too small to support meaningful statistical comparison, the results indicate that bovine parthenogenotes produced in vitro are capable of development to the blastocyst stage. 相似文献
14.
Effects of post-treatment with 6-dimethylaminopurine (6-DMAP) on ethanol activation of mouse oocytes at different ages 总被引:4,自引:0,他引:4
Lan GC Ma SF Wang ZY Luo MJ Chang ZL Tan JH 《Journal of experimental zoology. Part A, Comparative experimental biology》2004,301(10):837-843
To study the effect of post-treatment with 6-Dimethylaminopurine (6-DMAP) on oocyte activation and development, mouse oocytes collected at different times post human chorion gonadotropin (hCG) injection were incubated in 6-DMAP-containing Chatot-Ziomek-Bavister (CZB) medium for different periods after ethanol exposure, and activation and development were observed. When oocytes were cultured in 6-DMAP without prior ethanol exposure, the highest activation rate was only 40%. Incubation in 6-DMAP for 6 h following ethanol exposure significantly (P < 0.05) increased the activation rate in oocytes recovered 15 and 18 h post hCG, but this effect was not significant in the 21 h oocytes. When oocytes were incubated in 6-DMAP for 1 h at different time points after ethanol, a 6-DMAP susceptible temporal window was found to be located from the second to the fifth h in the 18 h oocytes and from the fourth to the fifth h in the 15 h oocytes, and within the window, the duration of 6-DMAP incubation can be reduced to 0.5 h with more than 80% activation. With the 13 h oocytes, however, 6-DMAP-incubation can only be shortened to 3 h and no specific temporal window was identified. Oocytes that were incubated in 6-DMAP for 1 or 2 h after ethanol exposure developed to morula/blastocyst stages at significantly (P < 0.05) higher rates than those incubated in 6-DMAP for 6 h. Our results suggested that (i) long duration of 6-DMAP incubation impaired the development of mouse parthenogenotes; (ii) the effect of 6-DMAP alone was limited without prior ethanol exposure; (iii) the egg age affected both the timing of 6-DMAP susceptibility and the duration of exposure required to obtain a maximal activating effect; (iv) the most effective activating protocols varied for oocytes of different ages. 相似文献
15.
This study determines the efficiency of sequential calcium treatments (electroporation or ionomycin) combined with protein synthesis (cycloheximide) or phosphorylation inhibitors (6-dimethylaminopurine) or the specific maturation promoting factor (MPF) inhibitor, roscovitine, in inducing artificial activation and development of rhesus macaque parthenotes or nuclear transfer embryos. Exposure of oocytes arrested at metaphase II (MII) to ionomycin followed by 6-dimethylaminopurine or to electroporation followed by cycloheximide and cytochalasin B induced pronuclear formation and development to the blastocyst stage at a rate similar to control embryos produced by intracytoplasmic sperm injection. Parthenotes did not complete meiosis or extrude a second polar body, consistent with their presumed diploid status. In contrast, oocytes treated sequentially with ionomycin and roscovitine extruded the second polar body and formed a pronucleus at a rate higher than that observed in controls. Following reconstruction by nuclear transfer, activation with ionomycin/6-dimethylaminopurine resulted in embryos that contained a single pronucleus and no polar bodies. All nuclear transfer embryos activated with ionomycin/roscovitine contained one large pronucleus. However, a third of these embryos emitted one or two polar bodies, clearly containing chromatin material. In summary, we have identified simple yet effective methods of oocyte or cytoplast activation in the monkey, ionomycin/6-dimethylaminopurine, electroporation/cycloheximide/cytochalasin B, and ionomycin/roscovitine, which are applicable to parthenote or nuclear transfer embryo production. 相似文献
16.
Ock SA Bhak JS Balasubramanian S Lee HJ Choe SY Rho GJ 《Zygote (Cambridge, England)》2003,11(1):69-76
In this study, the developmental capacity and cytogenetic composition of different oocyte activation protocols was evaluated following intracytoplasmic sperm injection (ICSI) of in vitro matured bovine oocytes. Motile spermatozoa selected by Percoll density gradient were treated with 5 mM dithiothreitol (DTT) and analysed for ultrastructural changes of the head using transmission electron microscopy (TEM). The alterations in sperm morphology after DTT treatment for different times (15, 30 and 60 min) were 10%, 45-55% and 70-85%, respectively. Further, a partial decondensation of sperm heads was observed after DTT treatment for 30 min. Oocytes were injected with sperm treated with DTT for 30 min. In group 1, sperm injection was performed without any activation stimulus to the oocytes. In group 2, sham injection without sperm was performed without activating the oocytes. Oocytes injected with sperm exposed to 5 microM ionomycin for 5 min (group 3), 5 microM ionomycin + 1.9 mM dimethylaminopurine (DMAP) for 3 h (group 4) and 5 microM ionomycin + 3 h culture in M199 + 1.9 mM DMAP (group 5) were also evaluated for cleavage, development and chromosomal abnormality. Cleavage and development rates in groups 1, 2 and 3 were significantly (p < 0.05) lower than those in groups 4 and 5. The incidence of chromosomal abnormality in the embryos treated directly with DMAP after ionomycin (group 4) was higher than in group 5. We conclude that immediate DMAP treatment after ionomycin exposure of oocytes results in arrest of release of the second polar body, and thus leads to changes in chromosomal pattern. Therefore, the time interval between ionomycin and DMAP plays a crucial role in bovine ICSI. 相似文献
17.
T. Nagai 《Molecular reproduction and development》1987,16(3):243-249
Cattle follicular oocytes cultured in vitro for 24–33 h were treated with ethanol to induce artificial activation. When oocytes were cultured for 27–33 h before ethanol treatment, 60–68% of oocytes were activated and were found to have a female pronucleus(ei). In contrast, maturation culture of oocytes for 24–26 h resulted in low activation rates (25–38%). The female pronucleus was formed in the activated oocytes within 8–10 h of incubation after ethanol treatment. And it became visible under interference-contrast microscope by centrifugation for 3 min at 15,000g and 10 min at 20,000g. These results indicate that ethanol treatment is effective for activation of cattle follicular oocytes and that the pronucleus formed in the activated oocyte can be visualized by centrifugation. 相似文献
18.
Hosseini SM Hajian M Moulavi F Shahverdi AH Nasr-Esfahani MH 《Animal reproduction science》2008,108(1-2):122-133
Sperm-mediated oocyte activation is a complex procedure, both in steps and duration, not yet been completely mimicked during in vitro studies, e.g., parthenogenesis or somatic cell nuclear transfer. Furthermore, parthenogenetic studies have been recognized as a suitable model for studying activation efficiency for nuclear transfer cloning. This study, therefore, was conducted to develop an optimized artificial activation method, based on bovine cloning. In vitro matured bovine oocytes were initially exposed to electrical pulse, used for cell fusion during cloning, and then treated with 15 temporal sequential combinations of 3 chemical activators [calcium ionophore (CI), strontium (SR) and ethanol (ET)], followed by exposure to a protein kinase inhibitor or used for in vitro fertilization as control group. Treated and naturally fertilized oocytes were further cultured for up to 8 days. Embryo development was scored daily and blastocyst cell counting was carried out using differential staining at day 8 of culture. Among 15 temporal sequential combinations of three chemical activators, the best cleavage rates were associated with double (SR-CI, 84.4%), triple (CI-SR-ET, 79.4%) and single (CI, 73.7%) compounds, respectively, which were not significantly different with each other and with in vitro fertilized (IVF) (85.5%). The highest blastocyst rates were gained with ET-SR (24.5%), SR-CI-ET (20.4%) and CI (24.5%) accordingly which were not significantly different with each other but significantly lower than IVF (47%). Embryo cell counting further confirmed reasonably better quality of blastocysts produced using double, triple and single compounds. Although most of the sequential artificial activation compounds induced high cleavage rate, close to IVF, but this did not assure comparable further embryo development to the blastocyst stage. Nevertheless, the results suggest exposure of in vitro matured bovine oocytes to electrical pulse, followed by exposure to CI-6-dimethylaminopurine (6-DMAP) or ET-SR-6-DMAP could be regarded as the optimal artificial activation protocol for in vitro development of parthenogenic bovine oocytes or as a step for activation protocol in cloning procedure. 相似文献
19.
Strontium efficiently activates mouse oocytes, however, there is limited information on its use in cattle. Thus, the objective of this study was to establish a suitable protocol for activating bovine oocyte with strontium. For pronuclear development, the absence of calcium and magnesium in the activation medium (TALP) with 10 and 50 mM strontium (34.4 and 53.1%, respectively) was superior to the complete TALP (6.5 and 19.4%, respectively). In all activation media, better results were observed with 25 and 50 mM strontium (21.9-53.1 and 19.4-53.1%, respectively). Incubation for 4 h promoted similar results in all strontium concentrations. However, strontium at 15, 20, and 25 mM for 6 and 8 h (40.7, 46.7, and 48.3%, and 29.3, 48.3, and 40.7%, respectively) were superior to control (15.5 and 10%, respectively). After in vitro maturation for 26 h, strontium (S; 20 mM in Ca2+- and Mg2+-free TALP for 6 h), ionomycin+strontium (IS), and strontium+ionomycin (SI) (60, 63.3, and 65%, respectively) were similar in pronuclear development and superior to ionomycin (I; 5 microM for 5 min; 36.7%). In treatments S and I, only 1 PN zygotes were observed. In treatment S, most of them had 1 and 2 PB (35.7 and 60.7%, respectively), and in treatment I, 0, 1, and 2 PB (14.3, 57.1, and 28.6%, respectively). Most of the zygotes in treatment IS and SI were 1 PN 2 PB (77.4 and 61.6%, respectively). The number of oocytes with clusters of cortical granules was similar in all treated groups (11-29%). Cortical granule exocytosis in treatment IS (68%) was similar to S (54%) and superior to I, SI, and control (27, 45, and 5.0%, respectively). Cleavage and blastocyst rates were similar for S, I, IS, and SI treatments (61.7-76.7, and 8.3-13.3%, respectively) and the same was observed for ICM, TE, and total cell number, and ICM/total cell ratio (22-25, 64-69, and 86-95, and 0.26-0.27). In conclusion, strontium may be efficiently applied for bovine oocyte activation at 20 mM in Ca2+- and Mg2+-free TALP medium for 6 h. 相似文献
20.
Regardless of the presence of sperm-borne oocyte-activating factors, activation of bovine oocytes with exogenous activation stimuli is required for further development after intracytoplasmic sperm injection (ICSI). The current study was designed to develop a new activation regimen for improving the blastocyst yield after ICSI of bovine oocytes harvested from ovaries stored at 10 to 12 °C for 24 h. After ICSI, oocytes were treated with 5 μM ionomycin for 5 min, 7% ethanol for 5 or 10 min, ionomycin followed by ethanol (5 or 10 min), ionomycin followed by 10 μg/mL cycloheximide for 5 h, or ionomycin followed by 1.9 mM 6-dimethylaminopurine for 3 h. Across the activation regimens, the cleavage rates of ICSI oocytes (45% to 77%) were higher than those of parthenogenetically activated oocytes (11% to 21%; P < 0.05). Activating the ICSI oocytes with ionomycin plus ethanol improved the blastocyst yield (29% to 30%) compared with that of nontreated oocytes (12%; P < 0.05), but the other regimens did not improve the blastocyst yield (9% to 18%; P > 0.05). Higher blastocyst yields were due to increasing the proportion of ICSI oocytes that passed through the early postfertilization events until cleavage. None of the regimens have any adverse effect on the quality of the blastocysts regarding the total cell number or the proportion of the inner cell mass cells. Thus, a new activation regimen using two triggers for single calcium increase effectively improved blastocyst yield after bovine ICSI using oocytes harvested from stored ovaries. 相似文献