首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discontinuous integuments formed by macroscopic discrete elements are characters mainly of land animals, both vertebrates and invertebrates. Waterproof properties of these integuments manifest themselves in capture and preservation of some air in their layers during submergence. The functions of integument air layer are various in different groups of animals, viz. participation in respiration (invertebrates with integuments in the form of plastron), insulation (especially birds and mammals), regulation of pelage state in the water (mammals). The principal condition of watertightness is high density of integument elements forming a system of capillaries with variable cross-sections. The general physical principle underlying the watertightness of integuments consist in a effect of surface tension arresting the water penetration deep into the coats soon as meniscus of a liquid has attend the widening section of intraintegumental capillary. For the watertightness of plastron formed by a single hair layer considerable stiffness of the whole system and high values of capillary pressure are important. Multilayered pliable mammalian pelage is characterized by a rather low capillary pressure because its effect is supplemented by the pressure that arise in the pelage air layer as a result of its compression during submergence. In birds with their structurally complicated integuments and diverse locomotory adaptations a wide spectrum of variability of plumage watertightness is observed.  相似文献   

2.
松油烯-4-醇对粘虫的致毒机制   总被引:1,自引:0,他引:1  
陈根强  冯俊涛  张兴 《昆虫知识》2006,43(6):785-788
采用华氏呼吸仪法、常规生化酶活力测定等方法,测定松油烯-4-醇熏蒸处理对粘虫Mythimna separata(Walker)幼虫呼吸作用、血淋巴理化性状、体内酶系活性等的影响。结果表明,松油烯-4-醇显著地影响粘虫的呼吸作用,不同中毒阶段试虫的呼吸率均显著提高,呼吸商发生改变;血淋巴理化性状也发生一定程度的变化,血淋巴总量随中毒程度的加深呈下降趋势,兴奋期、痉挛期、昏迷期血淋巴总量分别为对照试虫的85.55%、70.39%、38.47%,血淋巴比重呈上升趋势,pH值和渗透压变化不大;体内Na+-K+-ATP酶的活性受到明显抑制,头部组织中Na+-K+-ATP酶活性的抑制率在兴奋期、痉挛期分别达36.4%、80.2%,中肠组织中Na+-K+-ATP酶活性的抑制率达50%左右,对乙酰胆碱脂酶活性影响不大,对酯酶则是先激活后抑制。松油烯-4-醇对Na+-K+-ATP酶活性的抑制可能与粘虫最终死亡有关。  相似文献   

3.
Summary The influence of food density on respiration rate was measured for two cladoceran plankton species, Daphnia galeata and Bosmina longirostris, over the range 0 to 2.5 mg C 1-1, using the modified Winkler technique in order to examine how this affects the respiration rate and whether the functional response is the same in the two species. The respiration rate for animals of equivalent body size did not differ significantly between the two species in the absence of food, but was significantly lower in Bosmina longirostris than Daphnia galeata at high food density. Within a species, the response of respiration rate to changing food density did not differ among individuals of different body size. The respiration rate of D. galeata increased with increasing food density and reached a plateau at a high food density. A similar response curve was also found with the respiration rate of B. longirostris, although the response was less conspicuous. This response curve cannot be explained by the energy cost of known feeding behavior in cladocerans. Since the respiration rate related linearly with the assimilation rate, increase in food density seemed to increase the respiration rate by increasing the energetic cost required to process food biochemically, known as specific dynamic action.  相似文献   

4.
A succinct review of the terminology and of correlations between basic quantities in respiration physiology is given with special regard to oxygen as the gas of topical interest in radiation research and tumor pathophysiology. The role of the oxygen partial pressure gradient as the driving force of O2 diffusion is emphasized. It is generally recommended that the O2 partial pressure be considered when investigating oxygen diffusion and distribution problems. During those studies the physical boundary conditions, in particular the temperature, the barometric pressure, and the water vapor saturation, have to be considered and should be indicated. During equilibration of suspensions containing oxygen-consuming sites the impact of geometry and fluid agitation on the efficiency of gas exchange has to be taken into account. Reviews on solutions of diffusion equations, on numerical data for relevant constants to be considered, and on terminology and units in respiration physiology are included.  相似文献   

5.
Experiments with simultaneous recording of the heart rate, peripheral blood pressure, and respiration showed differences between the cardiovascular system parameters of men and women at rest and during various functional tests (cold, mental and physical exercise, spirometric mask testing). The results of several series of experiments using the same sample showed that women were characterized by a relationship between the state of the cardiovascular system and the psychoemotional status and well-being, as well as by a greater involvement of the central mechanisms in the regulation of the cardiovascular system when functional tests are performed. A high level of tonic activity and high reactivity of the sympathetic link of regulation of the cardiovascular system is typical of men.  相似文献   

6.
Performed on rats was study of the cause of appearance of stress reaction at action of hyperbaria upon organism. It was established that at the 5-h long action of gas mixtures (oxygen—nitrogen and oxygen—argon) under pressure of 0.35 and 0.5 MPa and partial pressure of oxygen of 0.02–0.03 MPa in camera 300 l in volume there was clearly realized stress confirmed by the corresponding markers. The appearance of stress was connected with density of gas mixture, which amounted to 6 g/l, that mechanically makes breathing difficult. On the other hand, use for respiration mixtures of elegas (SF6) with density of 6 g/l at normal pressure produces pronounced stress. At equal density, no difference was revealed in action of nitrogen, argon or elegas. Thus, use of high pressures requires light gases (helium, hydrogen, neon) that have low density.  相似文献   

7.
The osmotic basis of low and high amplitude swelling in mitochondria was investigated in detail using sucrose and mannitol as external osmolytes. Osmotic behaviour of mitochondria in various respiratory states was consistent with significant changes in the porosity of the inner membrane corresponding to the rate of respiration. The stoichiometry of oxidative phosphorylation was confirmed to be dependent on the physical state (i.e., osmotic stretch) of the inner membrane regardless of the external polyol used. High amplitude swelling in polyol media was shown to arise from a sequential disruption of the outer and inner mitochondrial membranes, due to a dynamic instability induced by a combination of respiration, unscreened (fixed) surface charge density and the consequent variable porosity of the inner membrane. These novel experimental findings based on the physical theory of osmosis emphasize the need to define the fine structural changes of the inner membrane associated with oxidative phosphorylation to arrive at a comprehensive mechanism.  相似文献   

8.
Long-term and short-term effects of CO2 enrichment on dark respiration were investigated using soybean (Glycine max [L.] Merr.) plants grown at either 35.5 or 71.0 Pa CO2. Indirect effects, or effects of growth in elevated CO2, were examined using a functional model that partitioned respiration into growth and maintenance components. Direct effects, or immediate effects of a short-term change in CO2, were examined by measuring dark respiration, first, at the CO2 partial pressure at which plants were grown, and second, after equilibration in the reciprocal CO2 partial pressure. The functional component model indicated that the maintenance coefficient of respiration increased 34% with elevated CO2, whereas the growth coefficient was not significantly affected. Changes in maintenance respiration were correlated with a 33% increase in leaf total nonstructural carbohydrate concentration, but leaf nitrogen content of soybean leaves was not affected by CO2 enrichment. Thus, increased maintenance respiration may be a consequence of increased nonstructural carbohydrate accumulation. When whole soybean plants were switched from low CO2 to high CO2 for a brief period, leaf respiration was always reduced. However, this direct effect of CO2 partial pressure was approximately 50% less in plants grown in elevated CO2. We conclude from this study that there are potentially important effects of CO2 enrichment on plant respiration but that the effects are different for plants given a short-term increase in CO2 partial pressure versus plants grown in elevated CO2.  相似文献   

9.
阻断猫基底动脉引起的延髓缺血和呼吸血压效应的研究   总被引:2,自引:0,他引:2  
目的 :通过结扎基底动脉主干不同节段观察脑干缺血范围和神经元形态学变化以及呼吸活动和动脉血压的变化 ,为进一步探讨脑干缺血影响呼吸和循环等功能活动的机制和防治措施提供依据。方法 :以猫为实验对象 ,结扎基底动脉主干不同节段 ,分析脑干缺血区血管密度和神经元形态学变化 ,以膈肌肌电和股动脉血压为指标 ,观察呼吸活动和血压的变化。结果 :结扎基底动脉可引起延髓血管密度减小 ,引起延髓缺血。结扎基底动脉不同节段引起的缺血范围有明显重叠 ,缺血区主要位于闩平面吻端的延髓。缺血区神经元胞体肿胀 ,尼氏染色着色变浅 ,尼氏体减少。动物的吸气时程 (TI)和呼气时程 (TE)缩短 ,呼吸频率 (RF)增快 ,平均动脉血压 (MBP)下降 ,均P <0 .0 5,呼吸幅度 (A)无明显变化。结论 :基底动脉不同节段对延髓的血液供应有明显重叠 ,延髓缺血可引起呼吸和血压改变 ,延髓缺血性神经元损伤是引起呼吸、血压改变的结构基础  相似文献   

10.
1. Experimental manipulations were performed to determine the biological, chemical and physical attributes that govern sediment respiration in the hyporheic zone of Sycamore Creek, a Sonoran Desert stream. 2. Hyporheic respiration per unit volume of sediment was inversely related to diameter of sediment particles, indicating that respiration is affected by availability of substrate for microbial colonization (i.e. sediment surfaces). Respiration rate per unit surface area on sediments was positively correlated with particle diameter, indicating greater metabolic activity of microbes on larger sediments. 3. Hyporheic respiration was more than twice as high in water collected from the surface flow than from subsurface flow. Further, hyporheic respiration was highest immediately following exposure of sediments to surface water and declined over time, presumably due to exhaustion of labile organic matter. 4. Microbial activity was stimulated by addition of algal leachate; however, amendments of leaf leachate had little effect. Respiration was also elevated with dextrose and leucine amendments, but not with inorganic nitrogen additions, indicating hyporheic respiration is carbon limited. 5. Water from the stream surface is probably enriched in labile organic matter derived from algae and stimulates respiration at points of hydrologic downwelling where surface water enters hyporheic sediments. The physical structure of sediments further affects metabolism by affecting the area available for microbial attachment.  相似文献   

11.
Beet vinasse (BV), a green manure constituted by Trifolium pratense L. uncomposted (TP) and composted with beet vinasse (at 1:1 rate, (TP+BV)1, and 2:1 rate, (TP+BV)2) at 10t organic matter ha(-1) rate were applied during a period of four years for purpose of restoration of a Xelloric Calciorthid located near Seville (Guadalquivir Valley, Andalusia, Spain). The effect on the plant cover, soil physical (structural stability and bulk density), chemical (exchangeable sodium percentage), and biological properties (microbial biomass, soil respiration and enzymatic activities such as dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase) were determined. The application of BV had a detrimental impact on soil physical (structural stability decreased 16.5% and bulk density increased 18.7% respect to the control soil), chemical (exchangeable sodium percentage increased 87.3% respect to the control soil), and biological properties (microbial biomass, soil respiration, and dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase activities decreased by 53.5%, 24.5%, 27.8%, 15%, 39.7%, 42.7%, and 65.6%, respectively with respect to the control soil), probably because high quantities of monovalent cations (Na principally) were introduced into the soil by the vinasse, thus destabilizing its structure. The application of TP had a positive impact on soil physical (structural stability increased 5.9% and bulk density decreased 6.1% respect to the control soil), and biological properties (microbial biomass, soil respiration, and dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase activities increased by 66.3%, 45.6%, 97.7%, 98.9%, 97.7%, 87.2%, and 89.4%, respectively with respect to the control soil). However, when BV was co-composted with a green manure, principally at a 2:1 rate, the resulting compost had a positive effect on soil physical (structural stability increased 10.5% and bulk density decreased 13.5% respect to the control soil), and biological properties (microbial biomass, soil respiration, and dehydrogenase, urease, beta-glucosidase, phosphatase and arylsulfatase activities increased by 68.9%, 46.2%, 97.5%, 98.4%, 99.1%, 90.5% and 91.6%, respectively with respect to the control soil). After four years, the percentage of plant cover decreased 64.3% in the BV-amended plots respect to the control soil, whereas increased 82.8%, 81.6% and 81% in the (TP+BV)2, (TP+BV)1 and TP treatments, respectively. While the application of BV deteriorates the soil and therefore does not contribute to its restoration, the application of TP, and BV composted with TP protects the soil and will contribute to its restoration.  相似文献   

12.
The aim of this study is to investigate the effects of an artificially controlled environment, particularly elevated total pressure, on net photosynthesis and respiration during plant growth. Pressure directly affects not only cells and organelles in leaves but also the diffusion coefficients and degrees of solubility of CO2 and O2. In this study, the effects of elevated total pressure on the rates of net photosynthesis and respiration of a model plant, Arabidopsis thaliana, were investigated in a chamber that newly developed in this study to control the total pressure. The results clearly showed that the rate of respiration decreased linearly with increasing total pressure at a high humidity. The rate of respiration decreased linearly with increasing total pressure up to 0.2 MPa, and increased with increasing total pressure from 0.3 to 0.5 MPa at a low humidity. The rate of net photosynthesis decreased linearly with increasing total pressure under a constant partial pressure of CO2 at 40 Pa. On the other hand, the rate of net photosynthesis was clearly increased by up to 1.6-fold with increasing total pressure and partial pressure of CO2.  相似文献   

13.
Effects of pH, temperature, ionic strength and osmotic pressure on various respiratory states and indices of oxidative phosphorylation in well coupled rat liver mitochondria have been studied. It appears that temperature and osmotic pressure are the most important physical variables, whereas ionic strength and pH were devoid of any significant influence on oxidative phosphorylation. Thus any model for oxidative phosphorylation must critically account for the differential osmotic sensitivity of respiration as well as the curious fact that ADP/O ratio increases as temperature decreases.  相似文献   

14.
水位调控对崇明东滩围垦区滩涂湿地土壤呼吸的影响   总被引:1,自引:0,他引:1  
以长江口崇明东滩围垦区滩涂湿地3个地下水位梯度(低水位、中水位和高水位)为对象,于2011年1月至2012年1月测定了湿地的土壤呼吸速率及其主要影响因子.结果表明: 围垦区滩涂湿地低水位、中水位和高水位的土壤呼吸速率年变化幅度分别为0.75~11.57、0.70~12.61和 0.83~6.67 μmol·m-2·s-1,土壤呼吸速率的最大值出现在7月,最小值出现在1月;在3个梯度下,0~5 cm层土壤温度为驱动围垦区滩涂湿地土壤呼吸季节动态的关键微气象因子,拟合指数模型可以解释其70 %以上的季节变异,而各梯度间土壤呼吸温度敏感性(Q10值)无显著差异;高水位的土壤呼吸速率最低,可能与土壤温度较低和土壤体积含水量较高有关,中水位的土壤呼吸速率高于低水位,可能是土壤电导率和容重较低,地上生物量和细根密度较高的结果.合理调控围垦区滩涂湿地水位可以降低土壤呼吸速率,增强该类退化湿地的碳汇功能.  相似文献   

15.
16.
In leaves of C3 plants, the rate of nonphotorespiratory respiration appears to be higher in darkness than in the light. This change from a high to a low rate of carbon loss with increasing photon flux density leads to an increase in the apparent quantum yield of photosynthetic CO2 assimilation at low photon flux densities (Kok effect). The mechanism of this suppression of nonphotorespiratory respiration is not understood, but biochemical evidence and the observation that a Kok effect is often not observed under low O2, has led to the suggestion that photorespiration might be involved in some way. This hypothesis was tested with snowgum (Eucalyptus pauciflora Sieb. ex Spreng.) using gas exchange methods. The test was based on the assumption that if photorespiration were involved, then it would be expected that the intercellular partial pressure of CO2 would also have an influence on the Kok effect. Under normal atmospheric levels of CO2 and O2, a Kok effect was found. Changing the intercellular partial pressure of CO2, however, did not affect the estimate of nonphotorespiratory respiraton, and it was concluded that its decrease with increasing photon flux density did not involve photorespiration. Concurrent measurements showed that the quantum yield of net assimilation of CO2 increased with increasing intercellular partial pressure of CO2, and this increase agreed closely with predictions based on recent models of photosynthesis.  相似文献   

17.
One of many problems to be faced when assessing in vivo human muscle mitochondria respiration by phosphorus magnetic resonance spectroscopy (31P-MRS) is the definition of the correct reference population and the values of reference range. To take into account most factors that influence muscle activity as age, sex, physical activity; nutritional state etc., an exceedingly high number of different reference groups are needed. To overcome this problem we developed specific tests to assess separately in vivo the activity and the functionality of muscle mitochondria by 31P-MRS in clinical settings. By activity we refer to muscle whole metabolic activity, i.e. the total oxidative capacity of muscle mitochondria which is influenced by many factors (age, sex, physical activity, nutritional state etc.). By functionality we refer to the qualitative aspects of mitochondrial respiration which depends on the integrity of mitochondrial multienzyme systems and on substrate availability. Our tests ha ve been experienced on some 1200 patients and are currently used to detect deficits of mitochondrial respiration and ion transport in patients with suspected primary or secondary muscle mitochondrial malfunctioning. (Mol Cell Biochem 174: 11–15, 1997)  相似文献   

18.
降雨对草地土壤呼吸季节变异性的影响   总被引:4,自引:0,他引:4  
王旭  闫玉春  闫瑞瑞  杨桂霞  辛晓平 《生态学报》2013,33(18):5631-5635
利用土壤碳通量自动观测系统(LI-8150)对呼伦贝尔草原在自然降雨条件下的土壤呼吸作用进行了野外定位连续观测,研究结果表明:降雨对土壤呼吸作用存在激发效应和抑制效应,降雨发生后1-2 h内土壤呼吸速率可增加约1倍,当单次或者连续降雨累积量大于7-8 mm,或土壤含水量大于29%-30%时,降雨对土壤呼吸会产生明显的抑制作用。土壤呼吸的激发效应往往体现在次日,表现为次日平均土壤呼吸速率的显著升高;而抑制效应则在当日即可体现出来,表现为观测当日平均土壤呼吸速率的明显下降。土壤呼吸季节变异性与降雨频率和降雨强度密切相关,在降雨量一定的情况下,较低的降雨频率和较高的降雨强度会增加土壤呼吸的变异性。呼伦贝尔草甸草原而言,在生长季土壤平均含水量为16.5%时,土壤呼吸的温度敏感性值(Q10)为2.12;而平均土壤含水量为26%时,Q10值为2.82,明显高于前者,土壤含水量与Q10之间存在正相关关系。降雨导致土壤呼吸的激发效应和抑制效应交替发生,使草地土壤呼吸的季节变异性增加,降雨格局变化必然会对草地碳循环和碳通量特征产生深刻影响。  相似文献   

19.
《植物生态学报》2017,41(3):369
Aims Our main purposes were to investigate root pressure and its circadian rhythm of excised roots in ‘84K’ popular (Populus alba × P. glandulosa) cultured in soil and solution, to explore the influencing factors and their relationships with root pressure systematically and to understand the generation and rhythm regulation of root pressure. Methods We investigated the root pressure of excised roots in ‘84K’ popular using the method of digital pressure transducer. The diurnal rhythm of excised roots was conducted through different experimental treatments including sampling in different time, defoliation and girdling, together with ambient condition like soil temperature, differential or consistant temperature during day and night. Then we discussed the effects of root respiration and hydraulic conductivity on root pressure by further using chemical inhibitor. Furthermore, diurnal variation of osmotic potential and ions content as well as soluble sugar content of exudation was determined in order to explore their relationships with root pressure rhythm. Important findings Root pressure of excised roots in popular had diurnal rhythm which was higher during daytime and lower overnight. It reached its peak value in the morning to noon and valley value at 20:00. Root pressure of excised roots sampled at different time and cultured in different medium had influence on the rhythm of root pressure to some degrees, but did not the general rhythm of high in daytime and low overnight. Defoliation, girdling and the inhibitors for root respiration or cytomembrane hydraulic conductivity could affect the maximum value of root pressure while have no significant influence on the daily rhythm. Defoliation, girdling and respiration inhibitor reduced the maximum value of root pressure, whereas the hydraulic conductivity inhibitor had little influence on root pressure. The maximum value of root pressure declined with the decrease in soil temperature which could change the rhythm of root pressure. The synchronous change in the maximum value of root pressure and root respiration rate with temperature indicated that root respiration contributed to the change of root pressure along with temperature. Osmotic potential of root exudation was higher during the daytime and lower at night. Diurnal variations of ions and soluble sugar content of exudation were consistant with that of osmotic potential. The peak of root pressure measured under the condition of differential temperature during day and night was significant higher than that measured under constant temperature. In conclusion, root pressure of the poplar ‘84K’ showed significant diurnal rhythm, i.e. higher during the daytime and lower at night. The maximum value of root pressure was mainly regulated by root respiration metabolism. The factors such as respiration inhibitor, respiration substrate and temperature influence the value of the maximum root pressure of poplar ‘84K’. Root hydraulic conductivity had no significant influence on root pressure.  相似文献   

20.
The effects of pressure on the composition density distribution in a binary density gradient at sedimentation equilibrium in the analytical ultracentrifuge are rigorously examined. A computer algorithm is described for the necessary iterative computations. The pressure effect is found to be significant in runs where a long column length, high angular velocity, and a salt with a high pressure correction coefficient are simultaneously employed. Such conditions are sometimes encountered in current studies in which high precision is required to measure the compressibility of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号