首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The prophenoloxidase activating system is an important innate immune response against microbial infections in invertebrates. The major enzyme, phenoloxidase, is synthesized as an inactive precursor and its activation to an active enzyme is mediated by a cascade of clip domain serine proteinases. In this study, a cDNA encoding a prophenoloxidase activating enzyme-III from the giant freshwater prawn Macrobrachium rosenbergii, designated as MrProAE-III, was identified and characterized. The full-length cDNA contains an open reading frame of 1110 base pair (bp) encoding a predicted protein of 370 amino acids including an 22 amino acid signal peptide. The MrProAE-III protein exhibits a characteristic sequence structure of a long serine proteases-trypsin domain and an N- and C-terminal serine proteases-trypsin family histidine active sites, respectively, which together are the characteristics of the clip-serin proteases. Sequence analysis showed that MrProAE-III exhibited the highest amino acid sequence similarity (63%) to a ProAE-III from Atlantic blue crab, Callinectes sapidus. MrProAE-III mRNA and enzyme activity of MrProAE-III were detectable in all examined tissues, including hepatopancreas, hemocytes, pleopods, walking legs, eye stalk, gill, stomach, intestine, brain and muscle with the highest level of both in hepatopancreas. This is regulated after systemic infectious hypodermal and hematopoietic necrosis virus infection supporting that it is an immune-responsive gene. These results indicate that MrProAE-III functions in the proPO system and is an important component in the prawn immune system.  相似文献   

6.
Cathepsin L (MrCathL) was identified from a constructed cDNA library of freshwater prawn Macrobrachium rosenbergii. MrCathL full-length cDNA is 1161 base pairs (bp) with an ORF of 1026 bp which encodes a polypeptide of 342 amino acid (aa) long. The eukaryotic cysteine proteases, histidine and asparagine active site residues were identified in the aa sequence of MrCathL at 143–154, 286–296 and 304–323, respectively. The pair wise clustalW analysis of MrCathL showed the highest similarity (97%) with the homologous cathepsin L from Macrobrachium nipponense and the lowest similarity (70%) from human. Phylogenetic analysis revealed two distinct clusters of the invertebrates and vertebrates cathepsin L in the phylogenetic tree. MrCathL and cathepsin L from M. nipponense were clustered together, formed a sister group to cathepsin L of Penaeus monodon, and finally clustered to Lepeophtheirus salmonis. High level of (P < 0.05) MrCathL gene expression was noticed in haemocyte and lowest in eyestalk. Furthermore, the MrCathL gene expression in M. rosenbergii was up-regulated in haemocyte by virus [M. rosenbergii nodovirus (MrNV) and white spot syndrome baculovirus (WSBV)] and bacteria (Vibrio harveyi and Aeromonas hydrophila). The recombinant MrCathL exhibited a wide range of activity in various pH between 3 and 10 and highest at pH 7.5. Cysteine proteinase (stefin A, stefin B and antipain) showed significant influence (100%) on recombinant MrCathL enzyme activity. The relative activity and residual activity of recombinant MrCathL against various metal ions or salts and detergent tested at different concentrations. These results indicated that the metal ions, salts and detergent had an influence on the proteinase activity of recombinant MrCathL. Conclusively, the results of this study imply that MrCathL has high pH stability and is fascinating object for further research on the function of cathepsin L in prawn innate immune system.  相似文献   

7.
Catalase is one of the central enzymes involved in scavenging the high level of reactive oxygen species (ROS) by degradation of hydrogen peroxide to oxygen and water. The full-length catalase cDNA of Zhikong scallop Chlamys farreri (denoted as CfCAT) was identified from hemocytes by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The nucleotide sequence of CfCAT cDNA consisted of 3146bp with a 5' UTR of 103bp, an unusually long 3' UTR of 1519bp with a canonical polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 1521bp encoding a polypeptide of 507 amino acids with predicted molecular weight of 57.5kDa. The deduced amino acid sequence of CfCAT has significant homology to catalases from animals, plants and bacteria. Several highly conserved motifs including the proximal heme-ligand signature sequence RLFSYNDTH, the proximal active site signature FNRERIPERVVHAKGGGA, and the three catalytic amino acid residues of His(72), Asn(145) and Tyr(355) were identified in the deduced amino acid sequence of CfCAT. The CfCAT was demonstrated to be a peroxisomal glycoprotein with two potential glycosylation sites and a peroxisome targeting signal of ANL that was consistent with human, mouse and rat catalases. The time-course expression of CfCAT in hemocytes was measured by quantitative real-time PCR. The expression of CfCAT increased gradually and reached the highest point at 12h post-Vibrio infection, then recovered to the original level at 24h. All these results indicate that CfCAT, a constitutive and inducible protein, is a member of the catalase family and is involved in the process against ROS in scallop.  相似文献   

8.
9.
10.
11.
Clones representing two distinct barley catalase genes, Cat1 and Cat2, were found in a cDNA library prepared from seedling polysomal mRNA. Both clones were sequenced, and their deduced amino acid sequences were found to have high homology with maize and rice catalase genes. Cat1 had a 91% deduced amino acid sequence identity to CAT-1 of maize and 92% to CAT B of rice. Cat2 had 72 and 79% amino acid sequence identities to maize CAT-2 and-3 and 89% to CAT A of rice. Barley, maize or rice isozymes could be divided into two distinct groups by amino acid homologies, with one group homologous to the mitochondria-associated CAT-3 of maize and the other homologous to the maize peroxisomal/glyoxysomal CAT-1. Both barley CATs contained possible peroxisomal targeting signals, but neither had favorable mitochondrial targeting sequences. Cat1 mRNA occurred in whole endosperms (aleurones plus starchy endosperm), in isolated aleurones and in developing seeds, but Cat2 mRNA was virtually absent. Both mRNAs displayed different developmental expression patterns in scutella of germinating seeds. Cat2 mRNA predominated in etiolated seedling shoots and leaf blades. Barley genomic DNA contained two genes for Cat1 and one gene for Cat2. The Cat2 gene was mapped to the long arm of chromosome 4, 2.9 cM in telomeric orientation from the mlo locus conferring resistance to the powdery mildew fungus (Erysiphe graminis f.sp. hordei).  相似文献   

12.
Zhou F  Zheng L  Zhang D  Huang J  Qiu L  Yang Q  Jiang S 《Marine Genomics》2011,4(2):121-128
In present study, a thrombospondin gene was obtained from the ovary and neurosecretory organ in eyestalk cDNA library of black tiger prawn (Penaeus monodon). The full-length P. monodon thrombospondin (PmTSP) cDNA contained a 5' untranslated region (UTR) of 9 bp, an open reading frame (ORF) of 2778 bp encoding a polypeptide of 925 amino acids with molecular mass 100.57 kDa, and a 3'UTR of 99 bp. ScanProsite analysis indicated that PmTSP contained four chitin-binding type-II domains, an EGF-like domain, eight thrombospondin type-III repeats and one thrombospondin C-terminal domain. Homology analysis of the deduced amino acid sequence of the PmTSP with other known TSP sequences by MatGAT software revealed that the PmTSP shows very high homology with the sequences of Fennerpenaeus chinensis (89.9% similarity, 83.8% identity). Analysis of the tissue expression pattern of the PmTSP gene showed that the PmTSP mRNA was expressed in all tested tissues, including hepatopancreas, ovary, muscle, intestine, neurosecretory organ in eyestalk, neurosecretory organ in brain, stomach, and heart, with highest level in the ovary. Furthermore, the PmTSP expression was found to be of high level in six development stages of the ovary. The results indicated that PmTSP might play an important role in ovarian development.  相似文献   

13.
14.
15.
Stachybotrys elegans is a mycoparasite of the soilborne plant pathogenic fungus Rhizoctonia solani. The mycoparasitic activity of S. elegans is correlated with the production of cell wall degrading enzymes such as chitinases. This report details the cloning by RACE-PCR and characterization of a full-length cDNA clone, sechi44, that appears to encode an extracellular endochitinase. An analysis of the sechi44 sequence indicates that this gene contains a 1269-bp ORF and encodes a 423-aa polypeptide. The SECHI44 protein has a calculated molecular weight of 44.1kDa and pI of 5.53. Since the SECHI44 protein also appears to encode a signal peptide, an extracellular location for the corresponding protein is predicted. Comparison of SECHI44 sequence with known sequences of fungal endochitinases revealed that SECHI44 is grouped with endochitinases from other mycoparasites. Real-time quantitative RT-PCR analysis showed an elevated level of expression of sechi44 (21-fold) in chitin-rich (induced) as compared to no-carbon (non-induced) culture conditions. In dual culture, the temporal expression of sechi44 increased after 2 days of contact with R. solani, reaching a 10-fold increase after 9 days, followed by a decrease to basic expression level at 12 days. Interestingly, inhibition of sechi44 expression was observed when S. elegans hyphae were in close proximity with R. solani hyphae.  相似文献   

16.
17.
Zhang  Yipeng  Wang  Keyue  Huang  Qiyuan  Shu  Shaohua 《Biotechnology letters》2022,44(10):1127-1138

Trichosanthes kirilowii Maxim taxonomically belongs to the Cucurbitaceae family and Trichosanthes genus. Its whole fruit, fruit peel, seed and root are widely used in traditional Chinese medicines. A ribosome-inactivating protein with RNA N-glycosidase activity called Trichosanthrip was isolated and purified from the seeds of T. kirilowii in our recent previous research. To further explore the biological functions of Trichosanthrip, the cDNA of T. kirilowii alpha-amylase inhibitor (TkAAI) was cloned through rapid-amplification of cDNA ends and its sequence was analyzed. Also, the heterologous protein was expressed in Escherichia coli and its alpha-amylase activity was further measured under optimized conditions. The full-length cDNA of TkAAI was 613 bp. The speculated open reading frame sequence encoded 141 amino acids with a molecular weight of 16.14 kDa. Phylogenetic analysis demonstrated that the Alpha-Amylase Inhibitors Seed Storage domain sequence of TkAAI revealed significant evolutionary homology with the 2S albumin derived from the other plants in the Cucurbitaceae group. In addition, TkAAI was assembled into pET28a with eGFP to generate a prokaryotic expression vector and was induced to express in E. coli. The TkAAI-eGFP infusion protein was proven to exhibit alpha-amylase inhibitory activity against porcine pancreatic amylase in a suitable reaction system. Analysis of gene expression patterns proved that the relative expression level of TkAAI in seeds is highest. The results presented here forecasted that the TkAAI might play a crucial role during the development of T. kirilowii seeds and provided fundamental insights into the possibility of T. kirilowii derived medicine to treat diabetes related diseases.

  相似文献   

18.
Termites play an important role in the degradation of dead plant materials and have acquired endogenous and symbiotic cellulose digestion capabilities. The feruloyl esterase enzyme (FAE) gene amplified from the metagenomic DNA of Coptotermes formosanus gut was cloned in the TA cloning vector and subcloned into a pET32a expression vector. The Ft3-7 gene has 84% sequence identity with Clostridium saccharolyticum and shows amino acid sequence identity with predicted xylanase/chitin deacetylase and endo-1,4-beta-xylanase. The sequence analysis reveals that probably Ft3-7 could be a new gene and that its molecular mass was 18.5 kDa. The activity of the recombinant enzyme (Ft3-7) produced in Escherichia coli (E.coli) was 21.4 U with substrate ethyl ferulate and its specific activity was 24.6 U/mg protein. The optimum pH and temperature for enzyme activity were 7.0 and 37oC, respectively. The substrate utilization preferences and sequence similarity of the Ft3-7 place it in the type-D sub-class of FAE.  相似文献   

19.
Shen G  Pang Y  Wu W  Miao Z  Qian H  Zhao L  Sun X  Tang K 《Journal of plant physiology》2005,162(10):1160-1168
A novel defensin gene was isolated from Ginkgo biloba. The full-length cDNA of G. biloba defensin (designated as Gbd) was 534bp. The cDNA contained a 240-bp open reading frame encoding an 80-amino acid protein of 5.68 kDa with a potential 30 aa signal peptide. The putative GbD mature protein showed striking similarity to other plant defensins, representing low molecular size antimicrobial polypeptides. Eight cysteine sites conserved in plant defensins were also found in GbD at similar positions. Three-dimensional structure modeling showed that GbD strongly resembled defensin from tobacco (NaD1) and consisted of an alpha-helix and a triple-strand antiparallel beta-sheet that were stabilized by four intramolecular disulfide bonds, implying GbD may have functions similar to NaD1. The genomic DNA gel blot indicated that Gbd belonged to a multigene family. Expression analysis revealed that Gbd was up-regulated by wounding and methyl jasmonate treatments, suggesting that Gbd is potentially involved in plant resistance or tolerance to pathogens during wounding.  相似文献   

20.
SUMMARY: Sphingolipids are a structurally diverse group of molecules based on long-chain sphingoid bases that are found in animal, fungal and plant cells. In contrast to the situation in animals and yeast, much less is known about the spectrum of sphingolipid species in plants and the roles they play in mediating cellular processes. Here, we report the cloning and characterization of a plant ceramidase from rice (Oryza sativa spp. Japonica cv. Nipponbare). Sequence analysis suggests that the rice ceramidase (OsCDase) is similar to mammalian neutral ceramidases. We demonstrate that OsCDase is a bona fide ceramidase by heterologous expression in the yeast double knockout mutant Deltaypc1Deltaydc1 that lacks the yeast ceramidases YPC1p and YDC1p. Biochemical characterization of OsCDase showed that it exhibited classical Michaelis-Menten kinetics, with optimum activity between pH 5.7 and 6.0. OsCDase activity was enhanced in the presence of Ca(2+), Mg(2+), Mn(2+) and Zn(2+), but inhibited in the presence of Fe(2+). OsCDase appears to use ceramide instead of phytoceramide as a substrate. Subcellular localization showed that OsCDase is localized to the endoplasmic reticulum and Golgi, suggesting that these organelles are sites of ceramide metabolism in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号