首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Ras GTPases mediate numerous biological processes through their ability to cycle between an inactive GDP-bound form and an active GTP-bound form. Guanine nucleotide exchange factors (GEFs) favor the formation of the active Ras-GTP, whereas GTPase activating proteins (GAPs) promote the formation of inactive Ras-GDP. Numerous studies have established complex signaling cross-talks between Ras GTPases and other members of the superfamily of small GTPases. GEFs were thought to play a major role in these cross-talks. However, recently GAPs were also shown to play crucial roles in these processes. Among RasGAPs, Nf1 is of special interest. Nf1 is responsible for the genetic disease Neurofibromatosis type I, and recent data strongly suggest that this RasGAP connects different signaling pathways.

Methodology/Principal Findings

In order to know if the RasGAP Nf1 might play a role in connecting Ras GTPases to other small GTPase pathways, we systematically looked for new partners of Nf1, by performing a yeast two-hybrid screening on its SecPH domain. LIMK2, a major kinase of the Rho/ROCK/LIMK2/cofilin pathway, was identified in this screening. We confirmed this interaction by co-immunoprecipitation experiments, and further characterized it. We also demonstrated its specificity: the close related homolog of LIMK2, LIMK1, does not interact with the SecPH domain of Nf1. We then showed that SecPH partially inhibits the kinase activity of LIMK2 on cofilin. Our results furthermore suggest a precise mechanism for this inhibition: in fact, SecPH would specifically prevent LIMK2 activation by ROCK, its upstream regulator.

Conclusions/Significance

Although previous data had already connected Nf1 to actin cytoskeleton dynamics, our study provides for the first time possible detailed molecular requirements of this involvement. Nf1/LIMK2 interaction and inhibition allows to directly connect neurofibromatosis type I to actin cytoskeleton remodeling, and provides evidence that the RasGAP Nf1 mediates a new cross-talk between Ras and Rho signaling pathways within the superfamily of small GTPases.  相似文献   

2.
The epicardium is the primary source of coronary vascular smooth muscle cells (cVSMCs) and fibroblasts that reside in the compact myocardium. To form these epicardial-derived cells (EPDCs), the epicardium undergoes the process of epithelial to mesenchymal transition (EMT). Although several signaling pathways have been identified that disrupt EMT, no pathway has been reported that restricts this developmental process. Here, we identify neurofibromin 1 (Nf1) as a key mediator of epicardial EMT. To determine the function of Nf1 during epicardial EMT and the formation of epicardial derivatives, cardiac fibroblasts and cVSMCs, we generated mice with a tissue-specific deletion of Nf1 in the epicardium. We found that mutant epicardial cells transitioned more readily to mesenchymal cells in vitro and in vivo. The mesothelial epicardium lost epithelial gene expression and became more invasive. Using lineage tracing of EPDCs, we found that the process of EMT occurred earlier in Nf1 mutant hearts, with an increase in epicardial cells entering the compact myocardium. Moreover, loss of Nf1 caused increased EPDC proliferation and resulted in more cardiac fibroblasts and cVSMCs. Finally, we were able to partially reverse the excessive EMT caused by loss of Nf1 by disrupting Pdgfrα expression in the epicardium. Conversely, Nf1 activation was able to inhibit PDGF-induced epicardial EMT. Our results demonstrate a regulatory role for Nf1 during epicardial EMT and provide insights into the susceptibility of patients with disrupted NF1 signaling to cardiovascular disease.  相似文献   

3.
Children with neurofibromatosis type 1 (NF1) frequently have cognitive and behavioral deficits. Some of these deficits have been successfully modeled in Nf1 genetically-engineered mice that develop optic gliomas (Nf1 OPG mice). In the current study, we show that abnormal motivational influences affect the behavior of Nf1 OPG mice, particularly with regard to their response to novel environmental stimuli. For example, Nf1 OPG mice made fewer spontaneous alternations in a Y-maze and fewer arm entries relative to WT controls. However, analysis of normalized alternation data demonstrated that these differences were not due to a spatial working memory deficit. Other reported behavioral results (e.g., open-field test, below) suggest that differential responses to novelty and/or other motivational influences may be more important determinants of these kinds of behavior than simple differences in locomotor activity/spontaneous movements. Importantly, normal long-term depression was observed in hippocampal slices from Nf1 OPG mice. Results from elevated plus maze testing showed that differences in exploratory activity between Nf1 OPG and WT control mice may be dependent on the environmental context (e.g., threatening or non-threatening) under which exploration is being measured. Nf1 OPG mice also exhibited decreased exploratory hole poking in a novel holeboard and showed abnormal olfactory preferences, although L-dopa (50 mg/kg) administration resolved the abnormal olfactory preference behaviors. Nf1 OPG mice displayed an attenuated response to a novel open field in terms of decreased ambulatory activity and rearing but only during the first 10 min of the session. Importantly, Nf1 OPG mice demonstrated investigative rearing deficits with regard to a novel hanging object suspended on one side of the field which were not rescued by L-dopa administration. Collectively, our results provide new data important for evaluating therapeutic treatments aimed at ameliorating NF1-associated cognitive/behavioral deficits.  相似文献   

4.
Mutations of tumor suppressor Nf1 gene deregulate Ras-mediated signaling, which confers the predisposition for developing benign or malignant tumors. Inhibition of protein kinase C (PKC) was shown to be in synergy with aberrant Ras for the induction of apoptosis in various types of cancer cells. However, it has not been investigated whether loss of PKC is lethal for Nf1-deficient cells. In this study, using HMG (3-hydroxy-3-methylgutaryl, a PKC inhibitor), we demonstrate that the inhibition of PKC by HMG treatment triggered a persistently mitotic arrest, resulting in the occurrence of mitotic catastrophe in Nf1-deficient ST8814 cells. However, the introduction of the Nf1 effective domain gene into ST8814 cells abolished this mitotic crisis. In addition, HMG injection significantly attenuated the growth of the xenografted ST8814 tumors. Moreover, Chk1 was phosphorylated, accompanied with the persistent increase of cyclin B1 expression in HMG-treated ST8814 cells. The knockdown of Chk1 by the siRNA prevented the Nf1-deficient cells from undergoing HMG-mediated mitotic arrest as well as mitotic catastrophe. Thus, our data suggested that the suppression of PKC activates the Chk1-mediated mitotic exit checkpoint in Nf1-deficient cells, leading to the induction of apoptosis via mitotic catastrophe. Collectively, the study indicates that targeting PKC may be a potential option for developing new strategies to treat Nf1-deficiency-related diseases.  相似文献   

5.
Embryonic Six2-positive nephron progenitor cells adjacent to ureteric bud tips ultimately give rise to nephron structures, including proximal and distal tubules, podocytes, Bowman’s capsules, and the glomeruli. This process requires an internal balance between self-renew and differentiation of the nephron progenitor cells, which is mediated by numerous molecules. Recent studies have shown that the neurofibromin (Nf1) null mutant mouse embryos have an 18- to 24-h developmental delay in metanephros manifesting retardation in its cephalad repositioning and reduction number of glomeruli. However, the underlying inter-/intracellular signaling mechanisms responsible for reducing number of glomeruli during nephrogenesis remain to be fully elucidated. Here, we originally detected the Nf1 expression in developing kidney and metanephric mesenchyme cells. Surprisingly, Nf1 knockdown by small interfering RNAs in the metanephric mesenchyme cells (mK3) resulted in a decreased expression of Six2, the key marker of renal progenitor cells, while the ratio of apoptotic cells was significantly increased. Furthermore, overexpression of Six2 in mk3 cells partially rescued apoptosis phenotype. Collectively, these results implied that knockdown of Nf1 resulted in apoptosis of mK3 cells in vitro probably through down-regulation of Six2 expression. Collectively, we demonstrated that down-regulated Six2 by knockdown of Nf1 resulted in apoptosis of mK3 cells in vitro. These results implied that inhibition of Nf1 may delay metanephros development via down-regulation of Six2.  相似文献   

6.
7.
Skeletal abnormalities in neurofibromatosis type 1 syndrome (NF1) are observed in ~50% of patients. Here, we describe the phenotype of Nf1Ocl mouse model with Nf1‐deficient osteoclasts. Nf1Ocl mice with Nf1+/? or Nf1?/? osteoclasts in otherwise Nf1+/+ background were successfully generated by mating parental Nf1flox/flox and TRAP‐Cre mice. Contrary to our original hypothesis, osteoporotic or fragile bone phenotype was not observed. The µCT analysis revealed that tibial bone marrow cavity, trabecular tissue volume, and the perimeter of cortical bone were smaller in Nf1 mice compared to Nf1 control mice. Nf1 mice also a displayed narrowed growth plate in the proximal tibia. In vitro analysis showed increased bone resorption capacity and cytoskeletal changes including irregular cell shape and abnormal actin ring formation in Nf1?/? osteoclasts. Surprisingly, the size of spleen in Nf1 mice was two times larger than in controls and histomorphometric analysis showed splenic megakaryocytosis. In summary, Nf1Ocl mouse model presented with a mild but specific bone phenotype. This study shows that NF1‐deficiency in osteoclasts may have a role in the development of NF1‐related skeletal abnormalities, but Nf1‐deficiency in osteoclasts in Nf1+/+ background is not sufficient to induce skeletal abnormalities analogous to those observed in patients with NF1. J. Cell. Biochem. 113: 2136–2146, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Neurofibromatosis type 1 (NF1) is an autosomal dominantly inherited disease, characterized by various neurocutaneous symptoms, cognitive impairments and problems in fine and gross motor performance. Although cognitive deficits in NF1 have been attributed to increased release of the inhibitory neurotransmitter γ-amino butyric acid (GABA) in the hippocampus, the origin of the motor deficits is unknown. Cerebellar Purkinje cells, the sole output neurons of the cerebellar cortex, are GABAergic neurons and express neurofibromin at high levels, suggesting an important role for the cerebellum in the observed motor deficits in NF1. To test this, we determined the cerebellar contribution to motor problems in Nf1(+/-) mice, a validated mouse model for NF1. Using the Rotarod, a non-specific motor performance test, we confirmed that, like NF1 patients, Nf1(+/-) mice have motor deficits. Next, to evaluate the role of the cerebellum in these deficits, mice were subjected to cerebellum-specific motor performance and learning tests. Nf1(+/-) mice showed no impairment on the Erasmus ladder, as step time and number of missteps were not different. Furthermore, when compensatory eye movements were tested, no performance deficits were found in the optokinetic reflex and vestibulo-ocular reflex in the dark (VOR) or in the light (VVOR). Finally, Nf1(+/-) mice successfully completed short- and long-term VOR adaptation paradigms, tests that both depend on cerebellar function. Thus, despite the confirmed presence of motor performance problems in Nf1(+/-) mice, we found no indication of a cerebellar component. These results, combined with recent clinical data, suggest that cerebellar function is not overtly affected in NF1 patients.  相似文献   

9.
Individuals with the neurofibromatosis 1 (NF1) inherited tumor syndrome develop low-grade gliomas (astrocytomas) at an increased frequency, suggesting that the NF1 gene is a critical growth regulator for astrocytes. In an effort to determine the contribution of the NF1 gene product, neurofibromin, to astrocyte growth regulation and NF1-associated astrocytoma formation, we generated astrocyte-specific Nf1 conditional knockout mice (Nf1(GFAP)CKO) by using Cre/LoxP technology. Transgenic mice were developed in which Cre recombinase was specifically expressed in astrocytes by embryonic day 14.5. Successive intercrossing with mice bearing a conditional Nf1 allele (Nf1flox) resulted in GFAP-Cre Nf1flox/flox (Nf1(GFAP)CKO) animals. No astrocytoma formation or neurological impairment was observed in Nf1(GFAP)CKO mice after 20 months, but increased numbers of proliferating astrocytes were observed in several brain regions. To determine the consequence of Nf1 inactivation at different developmental times, the growth properties of embryonic day 12.5 and postnatal day 2 Nf1 null astrocytes were analyzed. Nf1 null astrocytes exhibited increased proliferation but lacked tumorigenic properties in vitro and did not form tumors when injected into immunocompromised mouse brains in vivo. Collectively, our results suggest that loss of neurofibromin is not sufficient for astrocytoma formation in mice and that other genetic or environmental factors might influence NF1-associated glioma tumorigenesis.  相似文献   

10.
The merlin-1 tumor suppressor is encoded by the Neurofibromatosis-2 (Nf2) gene and loss-of-function Nf2 mutations lead to nervous system tumors in man and to several tumor types in mice. Merlin is an ERM (ezrin, radixin, moesin) family cytoskeletal protein that interacts with other ERM proteins and with components of cell-cell adherens junctions (AJs). Merlin stabilizes the links of AJs to the actin cytoskeleton. Thus, its loss destabilizes AJs, promoting cell migration and invasion, which in Nf2(+/-) mice leads to highly metastatic tumors. Paradoxically, the "closed" conformation of merlin-1, where its N-terminal four-point-one, ezrin, radixin, moesin (FERM) domain binds to its C-terminal tail domain, directs its tumor suppressor functions. Here we report the crystal structure of the human merlin-1 head domain when crystallized in the presence of its tail domain. Remarkably, unlike other ERM head-tail interactions, this structure suggests that binding of the tail provokes dimerization and dynamic movement and unfurling of the F2 motif of the FERM domain. We conclude the "closed" tumor suppressor conformer of merlin-1 is in fact an "open" dimer whose functions are disabled by Nf2 mutations that disrupt this architecture.  相似文献   

11.
Neurofibromatosis 1 (NF1) is a common genetic condition in which affected individuals are prone to the development of benign and malignant tumors. The NF1 tumor suppressor encodes a protein product, neurofibromin, which functions in part as a negative regulator of RAS. Loss of neurofibromin expression in NF1-associated tumors or Nf1-deficient mouse cells is associated with elevated RAS activity and increased cell proliferation. Despite this straightforward pathophysiologic association between neurofibromin, RAS, and tumorigenesis, recent insights from mouse and Drosophila modeling studies have suggested additional functions for neurofibromin and have implicated Nf1 heterozygosity in tumor formation. Lastly, Nf1 knockout mouse studies have also demonstrated important roles for cooperating genetic changes that accelerate tumorigenesis as well as modifier genes that impact on cancer susceptibility.  相似文献   

12.
Neurofibromin binds to caveolin-1 and regulates ras, FAK, and Akt   总被引:2,自引:0,他引:2  
Neurofibromin (Nf1) is an approximately 280 kDa protein having tumor suppressor function, presumably by virtue of its GTPase activating domain, but little is known regarding molecular aspects of its effector pathways. Caveolin-1 (Cav-1) regulates diverse signaling molecules and has itself been implicated as a tumor suppressor. Here we demonstrate that Nf1 binds to Cav-1's scaffolding domain and co-immunoprecipitates with Cav-1. Analysis of Nf1's primary structure reveals four potential caveolin binding domains, and interestingly, in individuals with neurofibromatosis I, missense mutations occur with high frequency in 3 of the 4 putative domains. We show that Nf1 modulates ras, Akt, and focal adhesion kinase pathways, thereby affecting cytoskeletal organization; moreover, Nf1's effects on signaling are altered when lipid rafts and caveolae are disrupted by cholesterol depletion. These novel findings provide insight into possible signaling mechanisms of Nf1 and suggest that together Nf1 and Cav-1 may coordinately regulate cell growth and differentiation.  相似文献   

13.
An extensive body of evidence links inositide-specific phospholipase C (PLC) to the nucleus and the main isoform located in the nucleus is PLCbeta(1). Constitutive overexpression of nuclear PLCbeta(1) has been previously shown to inhibit Friend erythroleukemia cells differentiation and to induce cell cycle progression targeting cyclin D3. The aim of this study was to identify new proteins regulated by PLCbeta(1) overexpression, given the role exerted by its signaling in the nucleus during cell growth and differentiation. To identify novel downstream effectors of nuclear PLCbeta(1)-dependent signaling in Friend erythroleukemia cells, we performed the high-resolution 2-DE-based proteomic analysis. Using a proteomic approach we found that SRp20, a member of the highly conserved SR family of splicing regulators, was down-regulated in cells overexpressing nuclear PLCbeta(1) as compared with wild-type cells. Reduction in SRp20 was confirmed by 2-D Western blotting. Moreover, we have shown that nuclear PLCbeta(1) is bound to the SRp20 splicing factor. Indeed, by immunoprecipitation and subcellular fractioning, we have demonstrated that endogenous PLCbeta(1) and SRp20 physically interact in the nucleus. Here we show the existence of a PLCbeta(1)-specific target, the splicing factor SRp20, whose expression is specifically down-regulated by the nuclear signaling evoked by PLCbeta(1).  相似文献   

14.
Yano T  Dunham WR  Ohnishi T 《Biochemistry》2005,44(5):1744-1754
In this report, we describe the electron paramagnetic resonance (EPR) spectroscopic characterizations of the fast-relaxing ubisemiquinone (SQ(Nf)) species associated with NADH-ubiquinone oxidoreductase (complex I) detected in tightly coupled submitochondrial particles (SMP). The signals of SQ(Nf) are observed only in the presence of delta muH+, whereas other slowly relaxing SQ species, SQ(Ns) and SQ(Nx), are not sensitive to delta muH+. In this study, we resolved the EPR spectrum of the delta muH+-sensitive SQ(Nf), which was trapped during the steady-state NADH-Q1 oxidoreductase reaction, as the difference between coupled and uncoupled SMP. Thorough analyses of the temperature profile of the resolved SQ(Nf) signals have revealed previously unrecognized spectra from delta muH+-sensitive SQ(Nf) species. This newly detected SQ(Nf) signals are observable only below 25 K, similar to the cluster N2 signals, and exhibit a doublet signal with a peak-to-peak separation (deltaB) of 56 G. In this work, we identify the partner to the interacting cluster N2. We have analyzed the g = 2.00 and g = 2.05 splittings using a computer simulation program that includes both exchange and dipolar interactions as well as the g-strain effect. Computer simulation of these interaction spectra showed that cluster N2 and fast-relaxing SQ(Nf) species undergo a spin-spin interaction, which contains both exchange (55 MHz) and dipolar interaction (16 MHz) with an estimated center-to-center distance of 12 A. This finding delineates an important functional role for this coupled [(N2)(red)-SQ(Nf)] structure in complex I, which is discussed in connection with electron transfer and energy coupling.  相似文献   

15.

Background

Neurofibromatosis type I (NF1, MIM#162200) is a relatively frequent genetic condition, which predisposes to tumor formation. Apart from tumors, individuals with NF1 often exhibit endocrine abnormalities such as precocious puberty (2,5–5% of NF1 patients) and some cases of hypertension (16% of NF1 patients). Several cases of adrenal cortex adenomas have been described in NF1 individuals supporting the notion that neurofibromin might play a role in adrenal cortex homeostasis. However, no experimental data were available to prove this hypothesis.

Materials and Methods

We analysed Nf1Prx1 mice and one case of adrenal cortical hyperplasia in a NF1patient.

Results

In Nf1Prx1 mice Nf1 is inactivated in the developing limbs, head mesenchyme as well as in the adrenal gland cortex, but not the adrenal medulla or brain. We show that adrenal gland size is increased in NF1Prx1 mice. Nf1Prx1 female mice showed corticosterone and aldosterone overproduction. Molecular analysis of Nf1 deficient adrenals revealed deregulation of multiple proteins, including steroidogenic acute regulatory protein (StAR), a vital mitochondrial factor promoting transfer of cholesterol into steroid making mitochondria. This was associated with a marked upregulation of MAPK pathway and a female specific increase of cAMP concentration in murine adrenal lysates. Complementarily, we characterized a patient with neurofibromatosis type I with macronodular adrenal hyperplasia with ACTH-independent cortisol overproduction. Comparison of normal control tissue- and adrenal hyperplasia- derived genomic DNA revealed loss of heterozygosity (LOH) of the wild type NF1 allele, showing that biallelic NF1 gene inactivation occurred in the hyperplastic adrenal gland.

Conclusions

Our data suggest that biallelic loss of Nf1 induces autonomous adrenal hyper-activity. We conclude that Nf1 is involved in the regulation of adrenal cortex function in mice and humans.  相似文献   

16.
17.
18.
Voltage-gated sodium channels localize at high density in axon initial segments and nodes of Ranvier in myelinated axons. Sodium channels consist of a pore-forming alpha subunit and at least one beta subunit. beta1 is a member of the immunoglobulin superfamily of cell adhesion molecules and interacts homophilically and heterophilically with contactin and Nf186. In this study, we characterized beta1 interactions with contactin and Nf186 in greater detail and investigated interactions of beta1 with NrCAM, Nf155, and sodium channel beta2 and beta3 subunits. Using Fc fusion proteins and immunocytochemical techniques, we show that beta1 interacts with the fibronectin-like domains of contactin. beta1 also interacts with NrCAM, Nf155, sodium channel beta2, and Nf186 but not with sodium channel beta3. The interaction of the extracellular domains of beta1 and beta2 requires the region 169TEEEGKTDGEGNA181 located in the intracellular domain of beta2. Interaction of beta1 with Nf186 results in increased Nav).2 cell surface density over alpha alone, similar to that shown previously for contactin and beta2. We propose that beta1 is the critical communication link between sodium channels, nodal cell adhesion molecules, and ankyrinG.  相似文献   

19.
Spemann's Organizer is a critical signaling center for patterning the embryo. It arises during blastula stages through the combined influences of dorsal modifying signals and general mesendoderm inducers. Dorsal modifying signals require the nuclear accumulation of beta-catenin, but how this is initiated remained a mystery until recently. New findings now demonstrate that maternal Wnt11 activates the canonical Wnt signaling pathway and is essential for organizer formation. Furthermore, two of the earliest identified mesendoderm inducers, activin and Vg-1, have now been shown to be required for induction of a fully functional organizer. Finally, while it has been clear for a number of years that the Organizer secretes a cocktail of growth factor antagonists, their necessity for organizer function has been in question. Their requirement has now been demonstrated through a multiple "knockdown" approach in frog embryos. Here, we discuss the impact these recent findings have on our understanding of formation and function of the Organizer.  相似文献   

20.
Several studies have demonstrated the existence of an autonomous intranuclear phospho-inositide cycle that involves the activation of nuclear PI-PLC and the generation of diacylglycerol (DG) within the nucleus. Although several distinct isozymes of PI-PLC have been detected in the nucleus, the isoform that has been most consistently highlighted as being nuclear is PI-PLC-beta1. Nuclear PI-PLC-beta1 has been linked with either cell proliferation or differentiation. Remarkably, the activation mechanism of nuclear PI-PLC-beta1 has been shown to be different from its plasma membrane counterpart, being dependent on phosphorylation effected by p44/42 mitogen activated protein (MAP) kinase. In this review, we report the most up-dated findings about nuclear PI-PLC-beta1, such as the localization in nuclear speckles, the activity changes during the cell cycle phases, and the possible involvement in the progression of myelodisplastic syndrome to acute myeloid leukemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号