首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: The formal representation of mereological aspects of canonical anatomy (parthood relations) is relatively well understood. The formal representation of other aspects of canonical anatomy, such as connectedness and adjacency relations between anatomical parts, their shape and size as well as the spatial arrangement of anatomical parts within larger anatomical structures are, however, much less well understood and represented in existing computational anatomical and bio-medical ontologies only insufficiently. RESULTS: In this article, we provide a methodology of how to incorporate this kind of information into anatomical and bio-medical ontologies by applying techniques of representing qualitative spatial information from Artificial Intelligence. In particular, we focus on how to explicitly take into account the qualitative and time-dependent character of these relations. As a running example, we use the human temporomandibular joint (TMJ). AVAILABILITY: Using the presented methodology, a formal ontology was developed which is accessible on http://www.ifomis.org/bfo/fol. This ontology may help to improve the logical and ontological rigor of bio-medical ontologies such as the OBO relation ontology.  相似文献   

2.
The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.  相似文献   

3.
CYTOMER is a relational database of organs/tissues, cell types, physiological systems and developmental stages that currently focuses on the human system. From this database, we have derived an ontology for anatomical and morphological structures for the human organism which includes all embryonal stages and the cell types constituting these structures. The ontology has been transferred to the OWL format and is freely available for download at http://cytomer/bioinf.med.uni-goettingen.de.  相似文献   

4.
MOTIVATION: Anatomy ontologies have a growing role in bioinformatics-for example, in indexing gene expression data in model organisms. To relate or draw conclusions from data so indexed, anatomy ontologies must be equipped with the formal vocabulary that would allow statements about meronomy to be qualified by constraints such as part of the male or part at the embryonic stage. Lacking such a vocabulary, anatomists have built this information into the structure of the ontology or into anatomical terms. For example, in the FlyBase anatomy for drosophila, the term larval abdominal segment encodes the stage in the term, while the terms male genital disc and female genital disc encode the sex. It remains implicit that a fly has one and only one of these parts during its larval stage. Such indicators of context can and should be represented explicitly in the ontology. RESULTS: The framework we have defined for anatomical ontologies allows the canonical anatomy structures of a given species to be those common to all sexes, and to have either male, female or hermaphrodite parts--but not combinations of the latter. Temporal aspects of development are addressed by associating a stage with organism parts and requiring a connected anatomy to have parts that exist at a common stage. Both sex and anatomical stage are represented by attributes. This formalization clarifies ontological structure and meaning and increases the capacity for formal reasoning about anatomy. The framework also supports generalizations such as vertebrate and invertebrate, thereby allowing the representation of anatomical structures that are common across a sub-phylum.  相似文献   

5.
6.
Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and Anatomy (BODA) will facilitate the comparison between both types of development. BODA uses the rules defined by the Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual development. We invite the scientific community to use this resource as a reference for the anatomy and developmental ontology of B. schlosseri and encourage recommendations for updates and improvements.  相似文献   

7.
8.
9.
We aimed to describe and analyse the morphological, anatomical and micromorphological traits of 36 Turkish orchids representing 12 genera (e.g. Anacamptis, Cephalanthera, Dactylorhiza, Orchis, Serapias) in detail and analyse their usability for solving phylogenetic and taxonomic issues. We applied UPGMA cluster analysis to anatomical, morphological and micromorphological characters such as root tubers, leaf and flower structures, pit, sclerenchymatic sheath, vascular bundle shape, crystal and starch, exodermis and endodermis structure, stomata type, bulliform cells in roots, shoots and leaves, surface structures like papillae, hairs and ornamentation on flower parts, leaves, fruits and seeds. Furthermore, in a phylogenetic framework, we analysed nuclear ribosomal ITS diversity in the same orchid species belonging, and in a combined Bayesian phylogenetic analysis based on anatomical, morphological, micromorphogical and ITS data we confirmed the usefulness of multiple data sets for effectively assessing taxonomically critical orchids. In the combined analysis, all genera were resolved as monophyletic with topologies congruent with recently published more thorough molecular phylogenetic reconstructions, while the trees obtained by seprately analysing the ITS and the anatomical, morphological, micromorphogical data were less resolved and partly inconclusive.  相似文献   

10.
Biofluorescence exists in only a few classes of organisms, with Anthozoa possessing the majority of species known to express fluorescent proteins. Most species within the Anthozoan subgroup Scleractinia (reef-building corals) not only express green fluorescent proteins, they also localize the proteins in distinct anatomical patterns.We examined the distribution of biofluorescence in 33 coral species, representing 8 families, from study sites on Australia's Great Barrier Reef. For 28 of these species, we report the presence of biofluorescence for the first time. The dominant fluorescent emissions observed were green (480-520 nm) and red (580-600 nm). Fluorescent proteins were expressed in three distinct patterns (highlighted, uniform, and complementary) among specific anatomical structures of corals across a variety of families. We report no significant overlap between the distribution of fluorescent proteins and the distribution of zooxanthellae. Analysis of the patterns of fluorescent protein distribution provides evidence that the scheme in which fluorescent proteins are distributed among the anatomical structures of corals is nonrandom. This targeted expression of fluorescent proteins in corals produces contrast and may function as a signaling mechanism to organisms with sensitivity to specific wavelengths of light.  相似文献   

11.
The development of DNA markers is becoming increasingly useful in the field of primatology for studies on paternity, population history, and biomedical research. In this study, we determine the efficacy of using cross-species amplification to identify single nucleotide polymorphisms (SNPs) in closely related species. The DNA of 93 individuals representing seven Old World Monkey species was analyzed to identify SNPs using cross-species amplification and genotyping. The loci genotyped were 653 SNPs identified and validated in rhesus macaques. Of the 653 loci analyzed, 27% were estimated to be polymorphic in the samples studied. SNPs identified at the same locus among different species (coincident SNPs) were found in six of the seven species studied with longtail macaques exhibiting the highest number of coincident SNPs (84). The distribution of coincident SNPs among species is not biased based on proximity to genes in the samples studied. In addition, the frequency of coincident SNPs is not consistent with expectations based on their phylogenetic relationships. This study demonstrates that cross-species amplification and genotyping using the Illumina Golden Gate Array is a useful method to identify a large number of SNPs in closely related species, although issues with ascertainment bias may limit the type of studies where this method can be applied.  相似文献   

12.
The Medaka Expression Pattern Database (MEPD) is a database for gene expression patterns determined by in situ hybridization in the small freshwater fish medaka (Oryzias latipes). Data have been collected from various research groups and MEPD is developing into a central expression pattern depository within the medaka community. Gene expression patterns are described by images and terms of a detailed medaka anatomy ontology of over 4000 terms, which we have developed for this purpose and submitted to Open Biological Ontologies. Sequences have been annotated via BLAST match results and using Gene Ontology terms. These new features will facilitate data analyses using bioinformatics approaches and allow cross-species comparisons of gene expression patterns. Presently, MEPD has 19,757 entries, for 1024 of them the expression pattern has been determined.  相似文献   

13.
Complexity is an important aspect of evolutionary biology, but there are many reasonable concepts of complexity, and its objective measurement is an elusive matter. Here we develop a simple measure of complexity based on counts of elements, incorporating the hierarchical information as represented in anatomical ontologies. Neomorphic and transformational characters are used to identify novelties and individuated morphological regions, respectively. By linking the characters to terms in an anatomical ontology a node‐driven approach is implemented, where a node ontology and a complexity score are inferred from the optimization of individual characters on each ancestral or terminal node. From the atomized vector of character scorings, the anatomical ontology is used to integrate the hierarchical structure of morphology in terminals and ancestors. These node ontologies are used to calculate a measure of complexity that can be traced on phylogenetic trees and is harmonious with usual phylogenetic operations. This strategy is compared with a terminal‐driven approach, in which the complexity scores are calculated only for terminals, and optimized as a continuous character on the internal nodes. These ideas are applied to a real dataset of 166 araneomorph spider species scored for 393 characters, using Spider Ontology (SPD, https://bioportal.bioontology.org/ontologies/SPD ); complexity scores and transitions are calculated for each node and branch, respectively. This result in a distribution of transitions skewed towards simplification; the transitions in complexity have no apparent correlation with character branch lengths. The node‐driven and terminal‐driven estimations are generally correlated in the complexity scores, but have higher divergence in the transition values. The structure of the ontology is used to provide complexity scores for organ systems and body parts of the focal groups.  相似文献   

14.
Rattans serve as an important source of raw non-wood materials for furniture and handicraft industries worldwide. However, their genomic sequence information in public databases is very limited. In this study, a set of 2,528 good-quality expressed sequence tags (ESTs) were generated from a full-length cDNA library constructed previously with root, stem and male inflorescence tissues of Calamus simplicifolius C. F. Wei, a rattan species native to Hainan Island, China. The ESTs were assembled into 1,588 unigenes, including 1,221 singletons and 367 contigs. BlastX searches against the GenBank non-redundant protein database revealed that 1,248 (78.6 %) unigenes had at least one significant match (E ≤ 10?5). The gene ontology functional classification assigned 991, 669 and 977 of the unigenes to the cellular component, molecular function and biological process categories, respectively. A total of 71 simple sequence repeat (SSR) loci were developed among these ESTs, including 65 polymorphic across 19 rattan species representing three genera. High levels of cross-species/genus transferability were observed for the EST-SSRs. For the polymorphic EST-SSR markers, the number of alleles per locus and polymorphic information content ranged from 2 to 25 (mean 11.1) and from 0.135 to 0.949 (mean 0.695), respectively. The EST sequences and the EST-SSR primers have been deposited in GenBank databases of EST (IDs JK838364–40891) and Probe (IDs Pr16718978–9048, to be assigned).  相似文献   

15.
We developed primers for amplifying and sequencing highly degraded mtDNA from diverse fish species. The primers flank a variable 148-bp fragment within the 12S region of mtDNA. We screened and sequenced 82 samples of bony fishes representing 17 families to confirm cross-species amplification and identification. Salmonid species were analysed and demonstrate 13 species-specific SNPs within this region. Based on alignments of additional deposited sequences, these primers are conserved in many other species, making them useful for species identification using degraded DNA samples such as archaeological specimens.  相似文献   

16.
17.

Background

In recent years large bibliographic databases have made much of the published literature of biology available for searches. However, the capabilities of the search engines integrated into these databases for text-based bibliographic searches are limited. To enable searches that deliver the results expected by comparative anatomists, an underlying logical structure known as an ontology is required.

Development and Testing of the Ontology

Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repository for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). We compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar.

Results and Significance

Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.  相似文献   

18.
The Taï region in Western Côte d`Ivoire is characterized by extensive overlap of human and animal habitats. This could influence patterns of adenovirus transmission between humans and domestic animals. Fecal samples from humans and various domestic animals were tested for the presence of adenoviruses by PCR. Phylogenetic and species delineation analyses were performed to further characterize the adenoviruses circulating in the region and to identify potential cross-species transmission events. Among domestic animals, adenovirus shedding was frequent (21.6% of domestic mammals and 41.5% of chickens) and the detected strains were highly diverse, several of them representing novel types. Although no evidence for zoonotic transmission of animal adenovirus was obtained, the present study provides concordant evidence in favor of common cross-species transmission of adenoviruses between different animal species and first indications for adenovirus transmission from humans to animals. These findings underline the thus far underestimated importance of reverse zoonotic transmission of viruses and of the role of domestic animals as pathogen reservoirs, “bridge species,” or intermediate hosts.  相似文献   

19.
A new taxon of ginkgophyte affinity Palaeoginkgoxylon zhoui gen. nov. et sp. nov. is described from the Guadalupian Lower Shihhotse Formation of the Hulstai coalfield, Inner Mongolia Autonomous Region (Nei Mongol), northern China, on the basis of the anatomical structures of the broad eustele and pycnoxylic secondary xylem. The anatomical structure of the new woody tree trunk resembles both the early gymnosperms of Eristophyton-Pitus types and the modern Ginkgo. Therefore, the new tree trunk is interpreted as representing a transitional stage in the evolution of Ginkgo from early arborescent lignophytes since the Early Carboniferous.  相似文献   

20.
Multiple sequence alignments are powerful tools for understanding the structures, functions, and evolutionary histories of linear biological macromolecules (DNA, RNA, and proteins), and for finding homologs in sequence databases. We address several ontological issues related to RNA sequence alignments that are informed by structure. Multiple sequence alignments are usually shown as two-dimensional (2D) matrices, with rows representing individual sequences, and columns identifying nucleotides from different sequences that correspond structurally, functionally, and/or evolutionarily. However, the requirement that sequences and structures correspond nucleotide-by-nucleotide is unrealistic and hinders representation of important biological relationships. High-throughput sequencing efforts are also rapidly making 2D alignments unmanageable because of vertical and horizontal expansion as more sequences are added. Solving the shortcomings of traditional RNA sequence alignments requires explicit annotation of the meaning of each relationship within the alignment. We introduce the notion of “correspondence,” which is an equivalence relation between RNA elements in sets of sequences as the basis of an RNA alignment ontology. The purpose of this ontology is twofold: first, to enable the development of new representations of RNA data and of software tools that resolve the expansion problems with current RNA sequence alignments, and second, to facilitate the integration of sequence data with secondary and three-dimensional structural information, as well as other experimental information, to create simultaneously more accurate and more exploitable RNA alignments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号