首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and “glycolytic reprogramming” in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is “mirrored” by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating “metabolic symbiosis” and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting “fibroblast addiction” in primary and metastatic tumor cells may expose a critical Achilles’ heel, leading to disease regression in both sporadic and familial cancers.  相似文献   

2.
3.
4.
Recently, we proposed a new paradigm for understanding the role of the tumor microenvironment in breast cancer onset and progression. In this model, cancer cells induce oxidative stress in adjacent fibroblasts. This, in turn, results in the onset of stromal autophagy, which produces recycled nutrients to “feed” anabolic cancer cells. However, it remains unknown how autophagy in the tumor microenvironment relates to inflammation, another key driver of tumorigenesis. To address this issue, here we employed a well-characterized co-culture system in which cancer cells induce autophagy in adjacent fibroblasts via oxidative stress and NFκB-activation. We show, using this co-culture system, that the same experimental conditions that result in an autophagic microenvironment, also drive in the production of numerous inflammatory mediators (including IL-6, IL-8, IL-10, MIp1α, IFNγ, RANTES (CCL5) and GMCSF). Furthermore, we demonstrate that most of these inflammatory mediators are individually sufficient to directly induce the onset of autophagy in fibroblasts. To further validate the in vivo relevance of these findings, we assessed the inflammatory status of Cav-1 (−/−) null mammary fat pads, which are a model of a bonafide autophagic microenvironment. Notably, we show that Cav-1 (−/−) mammary fat pads undergo infiltration with numerous inflammatory cell types, including lymphocytes, T-cells, macrophages and mast cells. Taken together, our results suggest that cytokine production and inflammation are key drivers of autophagy in the tumor microenvironment. These results may explain why a loss of stromal Cav-1 is a powerful predictor of poor clinical outcome in breast cancer patients, as it is a marker of both (1) autophagy and (2) inflammation in the tumor microenvironment. Lastly, hypoxia in fibroblasts was not sufficient to induce the full-blown inflammatory response that we observed during the co-culture of fibroblasts with cancer cells, indicating that key reciprocal interactions between cancer cells and fibroblasts may be required.Key words: caveolin-1, oxidative stress, cytokine production, inflammation, tumor microenvironment, autophagy, breast cancer  相似文献   

5.
Recently, we proposed a new paradigm for understanding the role of the tumor microenvironment in breast cancer onset and progression. In this model, cancer cells induce oxidative stress in adjacent fibroblasts. This, in turn, results in the onset of stromal autophagy, which produces recycled nutrients to “feed” anabolic cancer cells. However, it remains unknown how autophagy in the tumor microenvironment relates to inflammation, another key driver of tumorigenesis. To address this issue, here we employed a well-characterized co-culture system in which cancer cells induce autophagy in adjacent fibroblasts via oxidative stress and NFκB-activation. We show, using this co-culture system, that the same experimental conditions that result in an autophagic microenvironment, also drive in the production of numerous inflammatory mediators (including IL-6, IL-8, IL-10, MIP1a, IFNg, RANTES (CCL5) and GMCSF). Furthermore, we demonstrate that most of these inflammatory mediators are individually sufficient to directly induce the onset of autophagy in fibroblasts. To further validate the in vivo relevance of these findings, we assessed the inflammatory status of Cav-1 (-/-) null mammary fat pads, which are a model of a bonafide autophagic microenvironment. Notably, we show that Cav-1 (-/-) mammary fat pads undergo infiltration with numerous inflammatory cell types, including lymphocytes, T-cells, macrophages and mast cells. Taken together, our results suggest that cytokine production and inflammation are key drivers of autophagy in the tumor microenvironment. These results may explain why a loss of stromal Cav-1 is a powerful predictor of poor clinical outcome in breast cancer patients, as it is a marker of both (1) autophagy and (2) inflammation in the tumor microenvironment. Lastly, hypoxia in fibroblasts was not sufficient to induce the full-blown inflammatory response that we observed during the co-culture of fibroblasts with cancer cells, indicating that key reciprocal interactions between cancer cells and fibroblasts may be required.  相似文献   

6.
The tumor host microenvironment is increasingly viewed as an important contributor to tumor growth and suppression. Cellular oxidative stress resulting from high levels of reactive oxygen species (ROS) contributes to various processes involved in the development and progress of malignant tumors including carcinogenesis, aberrant growth, metastasis, and angiogenesis. In this regard, the stroma induces oxidative stress in adjacent tumor cells, and this in turn causes several changes in tumor cells including modulation of the redox status, inhibition of cell proliferation, and induction of apoptotic or necrotic cell death. Because the levels of ROS are determined by a balance between ROS generation and ROS detoxification, disruption of this system will result in increased or decreased ROS level. Recently, we demonstrated that the control of mitochondrial redox balance and cellular defense against oxidative damage is one of the primary functions of mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) that supplies NADPH for antioxidant systems. To explore the interactions between tumor cells and the host, we evaluated tumorigenesis between IDH2-deficient (knock-out) and wild-type mice in which B16F10 melanoma cells had been implanted. Suppression of B16F10 cell tumorigenesis was reproducibly observed in the IDH2-deficient mice along with significant elevation of oxidative stress in both the tumor and the stroma. In addition, the expression of angiogenesis markers was significantly down-regulated in both the tumor and the stroma of the IDH2-deficient mice. These results support the hypothesis that redox status-associated changes in the host environment of tumor-bearing mice may contribute to cancer progression.  相似文献   

7.
Chronic inflammation, systemic or local, plays a vital role in tumour progression and metastasis. Dysregulation of key physiological processes such as autophagy elicit unfavourable immune responses to induce chronic inflammation. Cytokines, growth factors and acute phase proteins present in the tumour microenvironment regulate inflammatory responses and alter crosstalk between various signalling pathways involved in the progression of cancer. Serum amyloid A (SAA) is a key acute phase protein secreted by the liver during the acute phase response (APR) following infection or injury. However, cancer and cancer-associated cells produce SAA, which when present in high levels in the tumour microenvironment contributes to cancer initiation, progression and metastasis. SAA can activate several signalling pathways such as the PI3K and MAPK pathways, which are also known modulators of the intracellular degradation process, autophagy. Autophagy can be regarded as having a double edged sword effect in cancer. Its dysregulation can induce malignant transformation through metabolic stress which manifests as oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. On the other hand, autophagy can promote cancer survival during metabolic stress, hypoxia and senescence. Autophagy has been utilised to promote the efficiency of chemotherapeutic agents and can either be inhibited or induced to improve treatment outcomes. This review aims to address the known mechanisms that regulate autophagy as well as illustrating the role of SAA in modulating these pathways and its clinical implications for cancer therapy.  相似文献   

8.
Cancer development is complex and involves several layers of interactions and pleotropic signaling mechanisms leading to progression. Cancer cells associate with resident stromal fibroblasts, smooth muscle cells, macrophages, endothelium, neurons and migrating cells at metastatic sites and phenotypically and genotypically activate them. These become an integral part of the cancer cell community through activated cell signaling mechanisms. During this process, the cancer cells and cells in the cancer microenvironment “co-evolve” in part due to oxidative stress, and acquire the ability to mimic other cell types (which can be termed osteomimicry, vasculomimicry, neuromimicry and stem cell mimicry), and undergo transition from epithelium to mesenchyme with definitive morphologic and behavioral modifications. In our laboratory, we demonstrated that prostate cancer cells co-evolve in their genotypic and phenotypic characters with stroma and acquire osteomimetic properties allowing them to proliferate and survive in the skeleton as bone metastasis. Several signaling interactions in the bone microenvironment, mediated by reactive oxygen species, soluble and membrane bound factors, such as superoxide, β2-microglobulin and RANKL have been described. Targeting the signaling pathways in the cancer-associated stromal microenvironment in combination with known conventional therapeutic modalities could have a synergistic effect on cancer treatment. Since cancer cells are constantly interacting and acquiring adaptive and survival changes primarily directed by their microenvironment, it is imperative to delineate these interactions and co-target both cancer and stroma to improve the treatment and overall survival of cancer patients.  相似文献   

9.
Annexin A1 is a multi functional molecule which is involved in inflammation, innate and adaptive immune systems, tumor progression and metastasis. We have previously showed the impaired tumor growth, metastasis, angiogenesis and wound healing in annexin A1 knockout mice. While tumor is a piece of heterogeneous mass including not only malignant tumor cells but also the stroma, the importance of the tumor stroma for tumor progression and metastasis is becoming increasingly clear. The tumor stroma is comprised by various components including extracellular matrix and non-malignant cells in the tumor, such as endothelial cells, fibroblasts, immune cells, inflammatory cells. Based on our previous finding of pro-angiogenic functions for annexin A1 in vascular endothelial cell sprouting, wound healing, tumor growth and metastasis, and the previously known properties for annexin A1 in immune cells and inflammation, this study hypothesized that annexin A1 is a key functional player in tumor development, linking the various components in tumor stroma by its actions in endothelial cells and immune cells. Using systems analysis programs commercially available, this paper further compared the gene expression between tumors from annexin A1 wild type mice and annexin A1 knockout mice and found a list of genes that significantly changed in the tumor stroma that lacked annexin A1. This revealed annexin A1 to be an effective regulator in tumor stroma and suggested a mechanism that annexin A1 affects tumor development and metastasis through interaction with the various components in the microenvironment surrounding the tumor cells.  相似文献   

10.

Background

Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.

Methodology/Principal Findings

We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.

Conclusions/Significance

Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.  相似文献   

11.

Background

The genetic diversity of cancer and the dynamic interactions between heterogeneous tumor cells, the stroma and immune cells present daunting challenges to the development of effective cancer therapies. Although cancer biology is more understood than ever, this has not translated into therapies that overcome drug resistance, cancer recurrence and metastasis. The future development of effective therapies will require more understanding of the dynamics of homeostatic dysregulation that drives cancer growth and progression.

Results

Cancer dynamics are explored using a model involving genes mediating the regulatory interactions between the signaling and metabolic pathways. The exploration is informed by a proposed genetic dysregulation measure of cellular processes. The analysis of the interaction dynamics between cancer cells, cancer associated fibroblasts, and tumor associate macrophages suggests that the mutual dependence of these cells promotes cancer growth and proliferation. In particular, MTOR and AMPK are hypothesized to be concurrently activated in cancer cells by amino acids recycled from the stroma. This leads to a proliferative growth supported by an upregulated glycolysis and a tricarboxylic acid cycle driven by glutamine sourced from the stroma. In other words, while genetic aberrations ignite carcinogenesis and lead to the dysregulation of key cellular processes, it is postulated that the dysregulation of metabolism locks cancer cells in a state of mutual dependence with the tumor microenvironment and deepens the tumor’s inflammation and immunosuppressive state which perpetuates as a result the growth and proliferation dynamics of cancer.

Conclusions

Cancer therapies should aim for a progressive disruption of the dynamics of interactions between cancer cells and the tumor microenvironment by targeting metabolic dysregulation and inflammation to partially restore tissue homeostasis and turn on the immune cancer kill switch. One potentially effective cancer therapeutic strategy is to induce the reduction of lactate and steer the tumor microenvironment to a state of reduced inflammation so as to enable an effective intervention of the immune system. The translation of this therapeutic approach into treatment regimens would however require more understanding of the adaptive complexity of cancer resulting from the interactions of cancer cells with the tumor microenvironment and the immune system.
  相似文献   

12.
13.
It has been increasingly recognized that tumor microenvironment plays an important role in carcinogenesis. Inflammatory component is present and contributes to tumor proliferation, angiogenesis, metastasis, and resistance to hormonal and chemotherapy. This review highlights the role of inflammation in the tumor metastasis. We focus on the function of proinflammatory factors, particularly cytokines during tumor metastasis. Understanding of the mechanisms by which inflammation contributes to metastasis will lead to innovative approach for treating cancer.

How tumor spreads remains an enigma and has received great attention in recent years, as metastasis is the major cause of cancer mortality. The complex and highly selective metastatic cascade not only depends on the intrinsic properties of tumor cells but also the microenvironment that they derive from. An inflammatory milieu consisting of infiltrated immune cells and their secretory cytokines, chemokines, and growth factors contribute significantly to the invasive and metastatic traits of cancer cells. Here, we review new insights into the molecular pathways that link inflammation in the tumor microenvironment to metastasis.  相似文献   

14.
肿瘤细胞和免疫细胞间的相互作用一直是肿瘤生物学关注的热点.流行病学与临床研究均表明,炎症反应与肿瘤的发生发展存在密切关联,但是其中的分子作用机理和遗传学机制尚未完全阐明.研究显示,T淋巴细胞、巨噬细胞、树突状细胞、巨大细胞等多种免疫细胞会浸润到肿瘤微环境中,协同调控肿瘤生长、免疫逃逸和侵袭转移.本文就近年对肿瘤微环境中免疫细胞功能研究的进展进行综述.正确认识这些免疫细胞在肿瘤发生发展中的作用,对于发展更优的肿瘤免疫治疗手段具有十分重要意义.  相似文献   

15.
Previously, we proposed that cancer cells behave as metabolic parasites, as they use targeted oxidative stress as a “weapon” to extract recycled nutrients from adjacent stromal cells. Oxidative stress in cancer-associated fibroblasts triggers autophagy and mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the “reverse Warburg effect.” To further test the validity of this hypothesis, here we used an in vitro MCF7-fibroblast co-culture system and quantitatively measured a variety of metabolic parameters by FACS analysis (analogous to laser-capture micro-dissection). Mitochondrial activity, glucose uptake and ROS production were measured with highly-sensitive fluorescent probes (MitoTracker, NBD-2-deoxy-glucose and DCF-DA). Interestingly, using this approach, we directly show that cancer cells initially secrete hydrogen peroxide that then triggers oxidative stress in neighboring fibroblasts. Thus, oxidative stress is contagious (spreads like a virus) and is propagated laterally and vectorially from cancer cells to adjacent fibroblasts. Experimentally, we show that oxidative stress in cancer-associated fibroblasts quantitatively reduces mitochondrial activity and increases glucose uptake, as the fibroblasts become more dependent on aerobic glycolysis. Conversely, co-cultured cancer cells show significant increases in mitochondrial activity and corresponding reductions in both glucose uptake and GLUT1 expression. Pre-treatment of co-cultures with extracellular catalase (an anti-oxidant enzyme that detoxifies hydrogen peroxide) blocks the onset of oxidative stress and potently induces the death of cancer cells, likely via starvation. Given that cancer-associated fibroblasts show the largest increases in glucose uptake, we suggest that PET imaging of human tumors, with Fluoro-2-deoxy-D-glucose (F-2-DG), may be specifically detecting the tumor stroma, rather than epithelial cancer cells.Key words: tumor stroma, microenvironment, hydrogen peroxide, aerobic glycolysis, mitochondrial oxidative phosphorylation, glucose uptake, oxidative stress, reactive oxygen species (ROS), cancer associated fibroblasts, PET imaging, the field effect, caveolin-1  相似文献   

16.
炎症向癌症转化的机制一直是癌症研究中的重点。作为炎症-肿瘤转化起始时所处的环境,炎性微环境是一个多种调控因子、细胞的大集合,其中包含的肿瘤干细胞、肿瘤相关巨噬细胞以及细胞因子(如趋化因子、生长因子)等在常见的眼部肿瘤中对肿瘤的起始、发生、演进乃至恶性转化和转移的过程起到了至关重要的调控作用。基于此,主要讨论了在炎性微环境中的肿瘤相关细胞、细胞因子以及细胞外基质等对肿瘤细胞的增殖、转移、浸润、侵袭过程的影响,着重探讨了眼部炎症-肿瘤转化相关的分子机制;并综述了视网膜母细胞瘤、腺样囊性癌等常见眼部肿瘤的特征及其由炎症到肿瘤发生过程中起重要调控作用的分子;最后,针对这些眼部肿瘤普遍存在的信号通路和分子靶点做出了对未来诊断及治疗方法的展望,以期在今后对眼科肿瘤的诊治过程中,能够针对提及的炎性成分设计思路,最大化防止炎症-肿瘤转化和恶性转归出现。  相似文献   

17.
The role of autophagy in tumorigenesis is controversial. Both autophagy inhibitors (chloroquine) and autophagy promoters (rapamycin) block tumorigenesis by unknown mechanism(s). This is called the “Autophagy Paradox.” We have recently reported a simple solution to this paradox. We demonstrated that epithelial cancer cells use oxidative stress to induce autophagy in the tumor microenvironment. As a consequence, the autophagic tumor stroma generates recycled nutrients that can then be used as chemical building blocks by anabolic epithelial cancer cells. This model results in a net energy transfer from the tumor stroma to epithelial cancer cells (an energy imbalance), thereby promoting tumor growth. This net energy transfer is both unilateral and vectorial, from the tumor stroma to the epithelial cancer cells, representing a true host-parasite relationship. We have termed this new paradigm “The Autophagic Tumor Stroma Model of Cancer Cell Metabolism” or “Battery-Operated Tumor Growth.” In this sense, autophagy in the tumor stroma serves as a “battery” to fuel tumor growth, progression and metastasis, independently of angiogenesis. Using this model, the systemic induction of autophagy will prevent epithelial cancer cells from using recycled nutrients, while the systemic inhibiton of autophagy will prevent stromal cells from producing recycled nutrients—both effectively “starving” cancer cells. We discuss the idea that tumor cells could become resistant to the systemic induction of autophagy by the upregulation of natural, endogenous autophagy inhibitors in cancer cells. Alternatively, tumor cells could also become resistant to the systemic induction of autophagy by the genetic silencing/deletion of pro-autophagic molecules, such as Beclin1. If autophagy resistance develops in cancer cells, then the systemic inhibition of autophagy would provide a therapeutic solution to this type of drug resistance, as it would still target autophagy in the tumor stroma. As such, an anti-cancer therapy that combines the alternating use of both autophagy promoters and autophagy inhibitors would be expected to prevent the onset of drug resistance. We also discuss why anti-angiogenic therapy has been found to promote tumor recurrence, progression and metastasis. More specifically, anti-angiogenic therapy would induce autophagy in the tumor stroma via the induction of stromal hypoxia, thereby converting a non-aggressive tumor type to a “lethal” aggressive tumor phenotype. Thus, uncoupling the metabolic parasitic relationship between cancer cells and an autophagic tumor stroma may hold great promise for anti-cancer therapy. Finally, we believe that autophagy in the tumor stroma is the local microscopic counterpart of systemic wasting (cancer-associated cachexia), which is associated with advanced and metastatic cancers. Cachexia in cancer patients is not due to decreased energy intake, but instead involves an increased basal metabolic rate and increased energy expenditures, resulting in a negative energy balance. Importantly, when tumors were surgically excised, this increased metabolic rate returned to normal levels. This view of cachexia, resulting in energy transfer to the tumor, is consistent with our hypothesis. So, cancer-associated cachexia may start locally as stromal autophagy and then spread systemically. As such, stromal autophagy may be the requisite precursor of systemic cancer-associated cachexia.Key words: caveolin-1, autophagy, cancer associated fibroblasts, hypoxia, mitophagy, oxidative stress, DNA damage, genomic instability, tumor stroma, wasting (cancer cachexia), Warburg effect  相似文献   

18.
人源性激肽释放酶结合蛋白(Kallistatin,Kal)是一种负性急性期内源性蛋白,与多种内皮相关性生理和病理过程密切相关,如血管生成及损伤修复、炎症、心功能不全、肾损伤、糖尿病等。炎症和氧化应激可引起内皮功能障碍,而Kal可抑制肿瘤坏死因子α引起的内皮细胞活化,通过KLF4-eNOS、PI3K-AKT-eNOS和AKT-FOXO1等信号通路,增加内皮细胞NO合酶的表达和NO生成,抑制内皮细胞损伤和凋亡。动物实验显示,Kal表达增加可减弱氧化应激诱导的细胞凋亡和器官损伤。基于内皮细胞所处的状态或来源,如健康或损伤情况,成熟内皮细胞或内皮祖细胞,Kal的作用可能有所区别。内皮细胞是参与肿瘤生长与转移的关键因素已达成共识,但肿瘤新生血管形成的机制尚待确认。Kal可诱导肿瘤内皮细胞凋亡,抑制肿瘤新生血管生成和肿瘤生长的能力已被证实。临床前研究结果表明,Kal具有多种药理作用,对氧化应激相关性疾病,特别是肿瘤治疗具有应用前景,但其药理作用的分子机制仍需深入探讨。  相似文献   

19.
20.
The role of autophagy in tumorigenesis is controversial. Both autophagy inhibitors (chloroquine) and autophagy promoters (rapamycin) block tumorigenesis by unknown mechanism(s). This is called the “Autophagy Paradox”. We have recently reported a simple solution to this paradox. We demonstrated that epithelial cancer cells use oxidative stress to induce autophagy in the tumor microenvironment. As a consequence, the autophagic tumor stroma generates recycled nutrients that can then be used as chemical building blocks by anabolic epithelial cancer cells. This model results in a net energy transfer from the tumor stroma to epithelial cancer cells (an energy imbalance), thereby promoting tumor growth. This net energy transfer is both unilateral and vectorial, from the tumor stroma to the epithelial cancer cells, representing a true host-parasite relationship. We have termed this new paradigm “The Autophagic Tumor Stroma Model of Cancer Cell Metabolism” or “Battery-Operated Tumor Growth”. In this sense, autophagy in the tumor stroma serves as a “battery” to fuel tumor growth, progression, and metastasis, independently of angiogenesis. Using this model, the systemic induction of autophagy will prevent epithelial cancer cells from using recycled nutrients, while the systemic inhibiton of autophagy will prevent stromal cells from producing recycled nutrients—both effectively “starving” cancer cells. We discuss the idea that tumor cells could become resistant to the systemic induction of autophagy, by the up-regulation of natural endogenous autophagy inhibitors in cancer cells. Alternatively, tumor cells could also become resistant to the systemic induction of autophagy, by the genetic silencing/deletion of pro-autophagic molecules, such as Beclin1. If autophagy resistance develops in cancer cells, then the systemic inhibition of autophagy would provide a therapeutic solution to this type of drug resistance, as it would still target autophagy in the tumor stroma. As such, an anti-cancer therapy that combines the alternating use of both autophagy promoters and autophagy inhibitors would be expected to prevent the onset of drug resistance. We also discuss why anti-angiogenic therapy has been found to promote tumor recurrence, progression, and metastasis. More specifically, anti-angiogenic therapy would induce autophagy in the tumor stroma via the induction of stromal hypoxia, thereby converting a non-aggressive tumor type to a “lethal” aggressive tumor phenotype. Thus, uncoupling the metabolic parasitic relationship between cancer cells and an autophagic tumor stroma may hold great promise for anti-cancer therapy. Finally, we believe that autophagy in the tumor stroma is the local microscopic counterpart of systemic wasting (cancer-associated cachexia), which is associated with advanced and metastatic cancers. Cachexia in cancer patients is not due to decreased energy intake, but instead involves an increased basal metabolic rate and increased energy expenditures, resulting in a negative energy balance. Importantly, when tumors were surgically excised, this increased metabolic rate returned to normal levels. This view of cachexia, resulting in energy transfer to the tumor, is consistent with our hypothesis. So, cancer-associated cachexia may start locally as stromal autophagy, and then spread systemically. As such, stromal autophagy may be the requisite precursor of systemic cancer-associated cachexia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号