首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pectobacterium carotovorum and Pectobacterium atrosepticum are dreadful causal agents of potato soft rot. Actually, there are no efficient bactericides used to protect potato against Pectobacterium spp. Biological control using actinobacteria could be an interesting approach to manage this disease. Thus, two hundred actinobacteria isolated from Moroccan habitats were tested for their ability to inhibit in vitro 4 environmental Pectobacterium strains and the two reference strains (P. carotovorum CFBP 5890 and P. atrosepticum CFBP 5889). Eight percent of these isolates were active against at least one of the tested pathogens and only 2% exhibited an antimicrobial activity against all tested Pectobacterium strains. Four bioactive isolates having the greatest pathogen inhibitory capabilities and classified as belonging to the genus Streptomyces species through 16S rDNA analysis were subsequently tested for their ability to reduce in vivo soft rot symptoms on potato slices of Bintje, Yukon Gold, Russet and Norland cultivars caused by the two pathogens P. carotovorum and P. atrosepticum. This test was carried out by using biomass inoculums and culture filtrate of the isolates as treatment. Among these, strain Streptomyces sp. OE7, reduced by 65–94% symptom severity caused by the two pathogens on potato slices. Streptomyces OE7 showed a potential for controlling soft rot on potato slices and could be useful in an integrated control program against potato soft rot pathogens in the objective to reduce treatments with chemical compounds.  相似文献   

2.
The aim of the work was to check the antibacterial activity of three synthetic peptides: CAMEL, Iseganan and Pexiganan as well as their possible application against plant pathogenic bacteria from the species Pectobacterium carotovorum (Pc) and Pectobacterium chrysanthemi (Pch). The antibacterial activity of the three chosen synthetic peptides was evaluated with the use of two tests: minimal inhibitory concentration and minimal bactericidal concentration. The CAMEL proved to be the most effective peptide, inhibiting the growth of different species of Pectobacterium in concentrations ranging from 2 to 8 μg/ml. Iseganan and Pexiganan also demonstrated activity against Pectobacterium sp., but it was lower than CAMEL. The CAMEL was able to inhibit Pc and Pch bacterial growth and tissue maceration in pathogenicity tests performed on potato tuber slices.  相似文献   

3.
Four Gram-negative, rod-shaped pectinolytic bacterial strains designated as 2M, 9M, DPMP599 and DPMP600 were subjected to polyphasic analyses that revealed their distinctiveness from the other Pectobacterium species. Strains 2M and 9M were isolated from Calla lily bulbs cultivated in Central Poland. DPMP599 and DPMP600 strains were isolated from Calla lily leaves from plants grown in Serbia. Phylogenetic analyses based on nine housekeeping genes (gapA, gyrA, icdA, pgi, proA, recA, recN, rpoA, and rpoS), as well as phylogeny based on the 381 most conserved universal proteins confirmed that Pectobacterium zantedeschiae strains were distantly related to the other Pectobacterium, and indicated Pectobacterium atrosepticum, Pectobacterium betavasculorum, Pectobacterium parmentieri and Pectobacterium wasabiae as the closest relatives. Moreover, the analysis revealed that Pectobacterium zantedeschiae strains are not akin to Pectobacterium aroidearum strains, which were likewise isolated from Calla lily.The genome sequencing of the strains 2M, 9M and DPMP600 and their comparison with whole genome sequences of other Pectobacterium type strains confirmed their distinctiveness and separate species status within the genus based on parameters of in silico DNA–DNA hybridization and average nucleotide identity (ANI) values. The MALDI-TOF MS proteomic profile supported the proposition of delineation of the P. zantedeschiae and additionally confirmed the individuality of the studied strains. Based on of all of these data, it is proposed that the strains 2M, 9M, DPMP599, and DPMP600 isolated from Calla lily, previously assigned as P. atrosepticum should be reclassified as Pectobacterium zantedeschiae sp. nov. with the strain 9MT (PCM2893 = DSM105717 = IFB9009) as the type strain.  相似文献   

4.
Sugar metabolism and sugar signalling are not only critical for plant growth and development, but are also important for stress responses. However, how sugar homeostasis is involved in plant defence against pathogen attack in the model crop rice remains largely unknown. In this study, we observed that the grains of gif1, a loss‐of‐function mutant of the cell wall invertase gene GRAIN INCOMPLETE FILLING 1 (GIF1), were hypersusceptible to postharvest fungal pathogens, with decreased levels of sugars and a thinner glume cell wall in comparison with the wild‐type. Interestingly, constitutive expression of GIF1 enhanced resistance to both the rice bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. The GIF1‐overexpressing (GIF1‐OE) plants accumulated higher levels of glucose, fructose and sucrose compared with the wild‐type plants. More importantly, higher levels of callose were deposited in GIF1‐OE plants during pathogen infection. Moreover, the cell wall was much thicker in the infection sites of the GIF1‐OE plants when compared with the wild‐type plants. We also found that defence‐related genes were constitutively activated in the GIF1‐OE plants. Taken together, our study reveals that sugar homeostasis mediated by GIF1 plays an important role in constitutive and induced physical and chemical defence.  相似文献   

5.
6.
Historically, research on Soft Rot Pectobacteriacea (SRP) has focused on economically important crops and ornamentals and knowledge of these bacteria outside the plant context remains poorly investigated. Recently, two closely related species Pectobacterium aquaticum and Pectobacterium quasiaquaticum were isolated from water and have not been isolated from any plant yet. To identify the distinctive characteristics of these two species, we performed a comparative genomic analysis of 80 genomes representing 19 Pectobacterium species and performed an evolutionary reconstruction. Both water species underwent a reduction in genome size associated with a high pseudogene content. A high gene loss was predicted at the emergence of both species. Among the 199 gene families missing from both P. aquaticum and P. quasiaquaticum genomes but present in at least 80% of other Pectobacterium genomes, COG analysis identified many genes involved in nutrient transport systems. In addition, many type II secreted proteins were also missing in both species. Phenotypic analysis revealed that both species had reduced pectinolytic activity, a biofilm formation defect, were highly motile and had reduced virulence on several plants. These genomic and phenotypic data suggest that the ecological niche of P. aquaticum and P. quasiaquaticum may differ from that of other Pectobacterium species.  相似文献   

7.
The ability of Streptomyces species to act as biocontrol agents for plant pathogens via induced systemic resistance has been demonstrated and considerable efforts have been made in elucidating the underlying mechanisms of Streptomyces–host plant–phytopathogen interactions. Here, we have assessed the ability of Streptomyces coelicolor, Streptomyces griseus, Streptomyces albus, Streptomyces antibioticus and Streptomyces champavatii to provide disease protection against Rhizoctonia solani in Solanum lycopersicon and have also examined associated changes in hydrogen peroxide (H2O2) production, lipid peroxidation (LPO) and antioxidant enzymes. The production of H2O2 at the second day after pathogen inoculation (dapi) was observed to be 1.1‐fold higher in Streptomyces‐treated plants, when compared to untreated inoculated control plants. A similar increase in catalase and ascorbate peroxidase activity was observed at fourth dapi whereas increased activities of guaiacol reductase and glutathione peroxidase were observed at fifth dapi. Likewise, LPO reached a maximum at sixth dapi in untreated inoculated plants while in Streptomyces‐treated plants it was observed to be 1.3–1.5‐fold less when compared to untreated inoculated control plants. This study offers novel insights into the mechanisms of priming by Streptomyces and highlights their capacity to activate plant defence responses generated by biotic stress through induction of antioxidant enzymes along with improved reactive oxygen species management.  相似文献   

8.
Seven Gram-negative, rod-shaped pectinolytic bacteria strains designated as IFB5227, IFB5228, IFB5229, IFB5230, IFB5231, IFB5232, IFB5636, isolated from potato tubers cultivated in Peru at high altitude (2400–3800 m) were subjected to polyphasic analyses that revealed their distinctiveness from the other Pectobacterium species. Phylogenetic analyses based on five housekeeping genes (gyrA, recA, recN, rpoA and rpoS) clearly showed strains separateness, simultaneously indicating Pectobacterium atrosepticum, Pectobacterium wasabiae, Pectobacterium parmentieri and Pectobacterium betavasculorum as the closest relatives. In silico DNA–DNA hybridization of strain IFB5232T with other Pectobacterium type strains revealed significant drop in DDH value below 70%, which is a prerequisite to distinguish Pectobacterium peruviense. The ANI values supported the proposition of delineation of the P. peruviense. Genetic REP-PCR fingerprint and detailed MALDI-TOF MS proteomic profile sealed the individuality of the studied strains. However, phenotypic assays do not indicate immense differences.Provided results of analyses performed for seven Peruvian strains are the basis for novel species distinction and reclassification of the strains IFB5227-5232 and IFB5636, previously classified as Pectobacterium carotovorum subsp. carotovorum. Here, we propose to establish the IFB5232 isolate as a type strain (=PCM2893T = LMG30269T = SCRI179T) with the name Pectobacterium peruviense sp. nov.  相似文献   

9.
Methyl salicylate production in tomato affects biotic interactions   总被引:1,自引:0,他引:1  
The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root‐invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene encoding salicylic acid methyl transferase (SAMT). Silencing of SAMT led to a major reduction in SAMT expression and MeSA emission upon herbivory by spider mites, without affecting the induced emission of other volatiles (terpenoids). The predatory mite Phytoseiulus persimilis, which preys on T. urticae, could not discriminate between infested and non‐infested SAMT‐silenced lines, as it could for wild‐type tomato plants. Moreover, when given the choice between infested SAMT‐silenced and infested wild‐type plants, they preferred the latter. These findings are supportive of a major role for MeSA in this indirect defence response of tomato. SAMT‐silenced tomato plants were less susceptible to a virulent strain of F. oxysporum f. sp. lycopersici, indicating that the direct defense responses in the roots are also affected in these plants. Our studies show that the conversion of SA to MeSA can affect both direct and indirect plant defence responses.  相似文献   

10.
The inside of Pinus thunbergii could be a reliable screening source for a useful agent in controlling plant disease. Isolation of endophytic actinomycetes from P. thunbergii and their potential as biocontrol agents against the plant pathogen Cylindrocladium sp. were investigated. Two endophytic actinomycetes, Streptomyces sp. and Microbispora sp., were isolated from surface-sterilised root tissues of P. thunbergii seedlings. The recovery test of these two endophytic actinomycetes from pine seedling showed that Streptomyces sp. was isolated from only roots, but Microbispora sp. was isolated from both roots and leaves. Thus, Microbispora sp. is able to move to leaves from roots. Moreover, we evaluated the potential of both strains as biocontrol agents against Cylindrocladium sp. Two weeks after inoculation of Cylindrocladium sp. alone, pine seedlings showed a 50% mortality rate. Co-inoculation of Cylindrocladium sp. and Microbispora sp. did not affect seedling mortality rate. However, inoculation with both Cylindrocladium sp. and Streptomyces sp. reduced seedling mortality to 12%. Streptomyces sp. could be a useful agent in controlling pine disease caused by Cylindrocladium sp. Thus, it seems that Streptomyces sp. may induce a local host defence reaction and Microbispora sp. systemically spreads to aerial parts through the transpiration stream.  相似文献   

11.
Soft rot disease of Amorphophallus konjac is caused by Pectobacterium species. Infected corms are considered a primary and important source of inocula. Based on the 16S rDNA sequences of the soft rot pathogens, one pair of specific primers was designed to identify the soft rot disease by real-time PCR and the other two were used to identify the pathogens of Pectobacterium carotovorum subsp. carotovorum. and P. chrysanthemi respectively. According to the results, a single cell of Pectobacterium could be detected by real-time PCR with the designed primer pair, while at least 100 bacteria were required for conventional PCR. Moreover, the two special primers can directly and accurately authenticate to Pectobacterium carotovorum subsp. carotovorum and P. chrysanthemi by the conventional PCR system without testing the pathogenicity, biochemical and phenotypic characterizations and so on. In conclusion, the PCR-based techniques showed several significant advantages in identifying the soft rot pathogens from konjac, such as higher sensitivity, rapidness and precision, and it could be widely used in seed quarantine.  相似文献   

12.
Plant cell wall degrading enzymes (PCWDE) are the major virulence determinants in phytopathogenic Pectobacterium, and their production is controlled by many regulatory factors. In this study, we focus on the role of the AepA protein, which was previously described to be a global regulator of PCWDE production in Pectobacterium carotovorum (Murata et al. in Mol Plant Microbe Interact 4:239–246, 1991). Our results show that neither inactivation nor overexpression of aepA affects PCWDE production in either Pectobacterium atrosepticum SCRI1043 or Pectobacterium carotovorum subsp. carotovorum SCC3193. The previously published observation based on the overexpression of aepA could be explained by the presence of the adjacent regulatory rsmB gene in the constructs used. Our database searches indicated that AepA belongs to the YtcJ subfamily of amidohydrolases. YtcJ-like amidohydrolases are present in bacteria, archaea, plants and some fungi. Although AepA has 28% identity with the formamide deformylase NfdA in Arthrobacter pascens F164, AepA was unable to catalyze the degradation of NdfA-specific N-substituted formamides. We conclude that AepA is a putative aminohydrolase not involved in regulation of PCWDE production.  相似文献   

13.
Five strains of Streptomyces sp. were evaluated in vitro for their ability of inhibiting the mycelial growth of Macrophomina phaseolina, the causal agent of root rot of mung bean (Vigna radiata L.). Among the Streptomyces sp. strains tested, PDK showed the maximum in vitro inhibition of mycelial growth of M. phaseolina and recorded an inhibition zone of 21?mm. The strains CBE, MDU, SA and ANR recorded inhibition zones of 18, 16, 13 and 11?mm, respectively. These Streptomyces sp. strains were tested for their growth-promoting efficiency on mung bean seedlings. Among them, CBE and PDK recorded the maximum increase in shoot length, root length and seedling vigour compared with control, followed by MDU. Three Streptomyces sp. strains (CBE, MDU and PDK) that showed higher levels of inhibition of growth of M. phaseolina in dual culture assay and plant growth-promoting activity were tested for their biocontrol activity against root rot under greenhouse and field conditions. Seed treatment or soil application with powder formulation of Streptomyces sp. strains CBE, MDU and PDK was effective in controlling root rot disease; but, combined application through seed and soil increased the efficacy in both the greenhouse and field trials. Among the treatments, seed treatment plus soil application with powder formulation of Streptomyces sp. strain CBE proved to be most effective, which reduced the root rot incidence from 26.8% (with non-bacterised seeds) to 4.0% in Trial I and from 32.0 to 4.9% in Trial II. The above treatment recorded the highest yield in both the field trials, and the yield increase was 78 and 74% over control in Trial I and Trial II, respectively. Isozyme analysis of the Streptomyces sp.-treated plants indicates that seed treatment plus soil application strongly induce the activities of peroxidase (PO-1 and PO-2) and polyphenol oxidase (PPO-2 and PPO-3) in mung bean. Among the three strains tested, Streptomyces sp. strain MDU- treated plants showed higher levels of activities of PO and PPO. Based on the above findings, it can be concluded that both the direct inhibition of pathogen and induced resistance might be involved in the control of root rot of mung bean by Streptomyces sp.  相似文献   

14.
Four new Gram-positive, phenol-degrading strains were isolated from the rhizospheres of endemorelict plants Ramonda serbica and Ramonda nathaliae known to exude high amounts of phenolics in the soil. Isolates were designated Bacillus sp. PS1, Bacillus sp. PS11, Streptomyces sp. PS12, and Streptomyces sp. PN1 based on 16S rDNA sequence and biochemical analysis. In addition to their ability to tolerate and utilize high amounts of phenol of either up to 800 or up to 1,400 mg l−1 without apparent inhibition in growth, all four strains were also able to degrade a broad range of aromatic substrates including benzene, toluene, ethylbenzene, xylenes, styrene, halogenated benzenes, and naphthalene. Isolates were able to grow in pure culture and in defined mixed culture on phenol and on the mixture of BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds as a sole source of carbon and energy. Pure culture of Bacillus sp. PS11 yielded 1.5-fold higher biomass amounts in comparison to mixed culture, under all conditions. Strains successfully degraded phenol in the soil model system (2 g kg−1) within 6 days. Activities of phenol hydroxylase, catechol 1,2-dioxygenase, and catechol 2,3-dioxygenase were detected and analyzed from the crude cell extract of the isolates. While all four strains use ortho degradation pathway, enzyme indicative of meta degradation pathway (catechol 2,3-dioxygenase) was also detected in Bacillus sp. PS11 and Streptomyces sp. PN1. Phenol degradation activities were induced 2 h after supplementation by phenol, but not by catechol. Catechol slightly inhibited activity of catechol 2,3-dioxygenase in strains PS11 and PN1.  相似文献   

15.
Fifteen plant species from a protected cloud forest (CF) in Veracruz, Mexico, were screened for their in vitro capacity to inhibit the growth of the phytopathogenic bacteria Chryseobacterium sp., Pseudomonas cichorii, Pectobacterium carotovorum and Pantoea stewartii, causal agents of damage to crops like ‘chayote’, lettuce, potato and corn. As a result, the bioactivity of Turpinia insignis and Leandra cornoides is reported for the first time against Chryseobacterium sp. and P. cichorii. In addition, 24 and 18 compounds not described for these species were dereplicated by an UPLC/MS‐MS method, respectively. The identified compounds included simple phenols, hydroxycinnamic acids, flavonoids and coumarins. The antibacterial assay of 12 of them demonstrated the bacteriostatic effect of vanillin, trans‐cinnamic acid, scopoletin and umbelliferone against Chryseobacterium sp. These findings confirm for the first time the value of the CF plants from Veracruz as sources of bioactive natural products with antimicrobial properties against phytopathogenic bacteria.  相似文献   

16.
17.
Ashwagandha (Withania somnifera L. Dunal), a therapeutically imperative herb is known for its useful steroidal lactones (withanolide and withaferin) and acyl steryl glycosides. The plant is a highly susceptible host for the plant parasitic nematode, Meloidogyne incognita. Selected chitinolytic microbes, namely Cellulosimicrobium cellulans MTN13, Flavobacterium johnsoniae MTN 20, Chitiniphilus sp. MTN22 and Streptomyces sp. MTN14, alone and in combination for M. incognita management and enhancement of secondary metabolites in W. somnifera cv. Poshita were evaluated. A significant enhancement in biomass yield (1.9-fold) and disease diminution (2.7-fold) was found in the dual microbial treatment Streptomyces sp. and Chitiniphilus sp. with respect to the untreated inoculated control plants. A significant augmentation (2.7- and 2.0-fold, respectively) in withanolide A and withaferin A was also found in the same treatment. The studies revealed increment of defence variables 1.1- to 1.3-fold and 1.6- to 2.1-fold in single- and dual-microbe treatments, respectively, than the untreated inoculated plants. The stimulation of the phenylpropanoid pathway and phenolics accumulation was the maximum at 5 days post inoculation (dpi), whereas antioxidant enzymes activities were the highest at 7?dpi. The results thus highlight a possible new function of chitinolytic microbes alone and in combinations that can effectively manage M. incognita-induced stress along with enhanced active molecules of W. somnifera.  相似文献   

18.
Tal B  Robeson DJ 《Plant physiology》1986,82(1):167-172
The coumarin phytoalexins ayapin and scopoletin accumulate in longitudinal stem sections of sunflower (Helianthus annuus L., Compositae) following inoculation with fungi both pathogenic (Alternaria helianthi) and nonpathogenic (Helminthosporium carbonum) to this plant. Both compounds were induced more rapidly, and they attained higher levels in tissue inoculated with the heterologous pathogen H. carbonum as compared with the sunflower pathogen A. helianthi. Similarly, scopoletin and ayapin accumulated to comparatively low concentrations following inoculation with a second sunflower pathogen, Phoma macdonaldii. Scopoletin was biosynthesized de novo following inoculation, although levels of its glucoside scopolin exceeded those of the aglucone in both infected and control tissues. Both scopoletin and scopolin were routinely detected in trace amounts in uninoculated tissue. In contrast, ayapin was not detected as a component of uninfected plants. When [14C]scopoletin was supplied to induced sunflower stem sections about 36% of the recovered radioactivity was in the form of ayapin. In vitro studies demonstrated that A. helianthi possessed the ability to rapidly degrade both scopoletin and ayapin, whereas H. carbonum was much less efficient in these traits. The differential degradation of these compounds by phytopathogenic fungi which do not attack sunflower is also discussed.  相似文献   

19.
20.
Forty-two Pectobacterium isolates were recovered from contaminated soil and rotted vegetables in Jordan. Twenty of them were belonged to; Pectobacterium carotovorum subsp. Carotovorum (Pbc) (= Erwinia carotovora subsp. carotovora), 11 isolates were belonged to Pectobacterium atrospeticum (= Erwinia carotovora subsp. atroseptica) (Pba) and 11 isolates were not classifiable (Pbs). Maceration activity of the 42 proved their ability to macerate potato, carrot and radish slices. Maceration activity of the isolates either of the same subspecies or in between the isolates of different subspecies isolated from the same host or from different hosts was varied. The measured concentration in μM?ml?1 of both cellulase and pectinase enzymes was variable too. The Rapid amplified polymorphic DNA-PCR finger printing of total genomic DNA using a pair of 10-mer oligonucleotide primers amplification showed similar DNA bands with some polymorphic variations amongst the isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号