首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant LOSS OF GDU 2 (LOG2) and Mammalian Mahogunin Ring Finger 1 (MGRN1) proteins are RING-type E3 ligases sharing similarity N-terminal to the RING domain. Deletion of this region disrupts the interaction of LOG2 with the plant membrane protein GLUTAMINE DUMPER1 (GDU1). Phylogenetic analysis identified two clades of LOG2/MGRN1-like proteins in vertebrates and plants. The ability of MGRN1 to functionally replace LOG2 was tested. MGRN1 ubiquitylates GDU1 in vitro and can partially substitute for LOG2 in the plant, partially restoring amino acid resistance to a GDU1-myc over-expression, log2-2 background. Altogether, these results suggest a conserved function for the N-terminal domain in evolution.  相似文献   

2.
Lee DH  Choi HW  Hwang BK 《Plant physiology》2011,156(4):2011-2025
Ubiquitination is essential for ubiquitin/proteasome-mediated protein degradation in plant development and defense. Here, we identified a novel E3 ubiquitin ligase RING1 gene, CaRING1, from pepper (Capsicum annuum). In pepper, CaRING1 expression is induced by avirulent Xanthomonas campestris pv vesicatoria infection. CaRING1 contains an amino-terminal transmembrane domain and a carboxyl-terminal RING domain. In addition, it displays in vitro E3 ubiquitin ligase activity, and the RING domain is essential for E3 ubiquitin ligase activity in CaRING1. CaRING1 also localizes to the plasma membrane. In pepper plants, virus-induced gene silencing of CaRING1 confers enhanced susceptibility to avirulent X. campestris pv vesicatoria infection, which is accompanied by compromised hypersensitive cell death, reduced expression of PATHOGENESIS-RELATED1, and lowered salicylic acid levels in leaves. Transient expression of CaRING1 in pepper leaves induces cell death and the defense response that requires the E3 ubiquitin ligase activity of CaRING1. By contrast, overexpression of CaRING1 in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to hemibiotrophic Pseudomonas syringae pv tomato and biotrophic Hyaloperonospora arabidopsidis infections. Taken together, these results suggest that CaRING1 is involved in the induction of cell death and the regulation of ubiquitination during the defense response to microbial pathogens.  相似文献   

3.
The nuclear transport of both proteins and RNAs has attracted considerable interest in recent years. However, regulation pathways of the nuclear transport machineries are still not well characterized. Previous studies indicated that ubiquitination is involved in poly(A)+ RNA nuclear export. For this reason, we systematically investigated ubiquitin-protein ligasess from the homologous to E6-AP carboxy terminus (HECT) family for potential individual roles in nuclear transport in Saccharomyces cerevisiae . Here we report that Rsp5, an essential yeast ubiquitin ligase involved in many cellular functions, when deleted or mutated in ligase activity, blocks the nuclear export of mRNAs. Affected messenger RNAs include both total poly(A)+ mRNA and heat-shock mRNAs. Mutation of Rsp5 does not affect nuclear protein import or export. Deletion of RSP5 blocks mRNA export, even under conditions where its essential role in unsaturated fatty acids biosynthesis is bypassed. Using domain mapping, we find that the ligase activity is required for proper mRNA export, indicating that ubiquitination by Rsp5 acts directly or indirectly to affect RNA export. The finding that Rsp5p ligase mutations cause a more pronounced defect at high temperatures suggests that ubiquitination of transport factors by Rsp5p may also be essential during stress conditions.  相似文献   

4.
5.
Ariadne (ARI) subfamily of RBR (Ring Between Ring fingers) proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene) finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L.) Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2–4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress.  相似文献   

6.
Many membrane proteins are involved in the transport of nutrients in plants. While the import of amino acids into plant cells is, in principle, well understood, their export has been insufficiently described. Here, we present the identification and characterization of the membrane protein Siliques Are Red1 (SIAR1) from Arabidopsis (Arabidopsis thaliana) that is able to translocate amino acids bidirectionally into as well as out of the cell. Analyses in yeast and oocytes suggest a SIAR1-mediated export of amino acids. In Arabidopsis, SIAR1 localizes to the plasma membrane and is expressed in the vascular tissue, in the pericycle, in stamen, and in the chalazal seed coat of ovules and developing seeds. Mutant alleles of SIAR1 accumulate anthocyanins as a symptom of reduced amino acid content in the early stages of silique development. Our data demonstrate that the SIAR1-mediated export of amino acids plays an important role in organic nitrogen allocation and particularly in amino acid homeostasis in developing siliques.  相似文献   

7.
何珊  张令强 《遗传》2015,37(9):911-917
蛋白质泛素化修饰过程在调节各种细胞生物学功能的过程中发挥了非常重要的作用,如细胞周期进程、DNA损伤修复、信号转导和各种蛋白质膜定位等。泛素化修饰可分为多聚泛素化修饰和单泛素化修饰。多聚泛素化修饰系统可以通过对底物连接不同类型的多泛素化链调节蛋白质的功能。多聚泛素化修饰中已知7种泛素链连接方式均为泛素内赖氨酸连接方式。近几年发现了第8种类型的泛素链连接形式即线性泛素化,其泛素链的连接方式是由泛素甲硫氨酸的氨基基团与另一泛素甘氨酸的羧基基团相连形成泛素链标记。目前研究表明线性泛素化修饰在先天性免疫和炎症反应等多个过程中发挥着非常重要的作用。募集线性泛素链的泛素连接酶E3被称为LUBAC复合体,其组成底物以及其活性调控机制和功能所知甚少。本文综述了募集线性泛素化链的泛素连接酶、去泛素化酶、底物等活性调控机制及其在先天性免疫等多个领域中的功能,分析了后续研究方向,以期为相关研究提供参考。  相似文献   

8.
Li W  Ahn IP  Ning Y  Park CH  Zeng L  Whitehill JG  Lu H  Zhao Q  Ding B  Xie Q  Zhou JM  Dai L  Wang GL 《Plant physiology》2012,159(1):239-250
The components in plant signal transduction pathways are intertwined and affect each other to coordinate plant growth, development, and defenses to stresses. The role of ubiquitination in connecting these pathways, particularly plant innate immunity and flowering, is largely unknown. Here, we report the dual roles for the Arabidopsis (Arabidopsis thaliana) Plant U-box protein13 (PUB13) in defense and flowering time control. In vitro ubiquitination assays indicated that PUB13 is an active E3 ubiquitin ligase and that the intact U-box domain is required for the E3 ligase activity. Disruption of the PUB13 gene by T-DNA insertion results in spontaneous cell death, the accumulation of hydrogen peroxide and salicylic acid (SA), and elevated resistance to biotrophic pathogens but increased susceptibility to necrotrophic pathogens. The cell death, hydrogen peroxide accumulation, and resistance to necrotrophic pathogens in pub13 are enhanced when plants are pretreated with high humidity. Importantly, pub13 also shows early flowering under middle- and long-day conditions, in which the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and FLOWERING LOCUS T is induced while FLOWERING LOCUS C expression is suppressed. Finally, we found that two components involved in the SA-mediated signaling pathway, SID2 and PAD4, are required for the defense and flowering-time phenotypes caused by the loss of function of PUB13. Taken together, our data demonstrate that PUB13 acts as an important node connecting SA-dependent defense signaling and flowering time regulation in Arabidopsis.  相似文献   

9.
Pratelli R  Pilot G 《FEBS letters》2006,580(30):6961-6966
The over-expression of the arabidopsis GLUTAMINE DUMPER1 gene (GDU1) leads to increased amino acid content and transport. In a screening for mutations suppressing this phenotype, a mutant was isolated. The mutation leads to a glycine to arginine substitution in one of the two conserved domains of the protein, the VIMAG domain. More detailed structure function relationship analyses showed that the presence of this domain and the membrane localisation are both necessary for the function of the GDU1 protein. These results shed light on the function of the GDU1 protein whose family is specific to plants.  相似文献   

10.
11.
12.
Protein ubiquitination requires the concerted action of three enzymes: ubiquitin‐activating enzyme (E1), ubiquitin‐conjugating enzyme (E2) and ubiquitin ligase (E3). These ubiquitination enzymes belong to an abundant protein family that is encoded in all eukaryotic genomes. Describing their biochemical characteristics is an important part of their functional analysis. It has been recognized that various E2/E3 specificities exist, and that detection of E3 ubiquitination activity in vitro may depend on the recruitment of E2s. Here, we describe the development of an in vitro ubiquitination system based on proteins encoded by genes from Arabidopsis. It includes most varieties of Arabidopsis E2 proteins, which are tested with several RING‐finger type E3 ligases. This system permits determination of E3 activity in combination with most of the E2 sub‐groups that have been identified in the Arabidopsis genome. At the same time, E2/E3 specificities have also been explored. The components used in this system are all from plants, particularly Arabidopsis, making it very suitable for ubiquitination assays of plant proteins. Some E2 proteins that are not easily expressed in Escherichia coli were transiently expressed and purified from plants before use in ubiquitination assays. This system is also adaptable to proteins of species other than plants. In this system, we also analyzed two mutated forms of ubiquitin, K48R and K63R, to detect various types of ubiquitin conjugation.  相似文献   

13.
Ubiquitination modulates nearly all aspects of plant life. Here, we reconstituted the Arabidopsis thaliana ubiquitination cascade in Escherichia coli using a synthetic biology approach. In this system, plant proteins are expressed and then immediately participate in ubiquitination reactions within E. coli cells. Additionally, the purification of individual ubiquitination components prior to setting up the ubiquitination reactions is omitted. To establish the reconstituted system, we co‐expressed Arabidopsis ubiquitin (Ub) and ubiquitination substrates with E1, E2 and E3 enzymes in E. coli using the Duet expression vectors. The functionality of the system was evaluated by examining the auto‐ubiquitination of a RING (really interesting new gene)‐type E3 ligase AIP2 and the ubiquitination of its substrate ABI3. Our results demonstrated the fidelity and specificity of this system. In addition, we applied this system to assess a subset of Arabidopsis E2s in Ub chain formation using E2 conjugation assays. Affinity‐tagged Ub allowed efficient purification of Ub conjugates in milligram quantities. Consistent with previous reports, distinct roles of various E2s in Ub chain assembly were also observed in this bacterial system. Therefore, this reconstituted system has multiple advantages, and it can be used to screen for targets of E3 ligases or to study plant ubiquitination in detail.  相似文献   

14.
Many plasma membrane transporters in yeast are endocytosed in response to excess substrate or certain stresses and degraded in the vacuole. Endocytosis invariably requires ubiquitination by the HECT domain ligase Rsp5. In the cases of the manganese transporter Smf1 and the amino acid transporters Can1, Lyp1 and Mup1 it has been shown that ubiquitination is mediated by arrestin-like adaptor proteins that bind to Rsp5 and recognize specific transporters. As yeast contains a large family of arrestins, this has been suggested as a general model for transporter regulation; however, analysis is complicated by redundancy amongst the arrestins. We have tested this model by removing all the arrestins and examining the requirements for endocytosis of four more transporters, Itr1 (inositol), Hxt6 (glucose), Fur4 (uracil) and Tat2 (tryptophan). This reveals functions for the arrestins Art5/Ygr068c and Art4/Rod1, and additional roles for Art1/Ldb19, Art2/Ecm21 and Art8/Csr2. It also reveals functional redundancy between arrestins and the arrestin-like adaptors Bul1 and Bul2. In addition, we show that delivery to the vacuole often requires multiple additional ubiquitin ligases or adaptors, including the RING domain ligase Pib1, and the adaptors Bsd2, Ear1 and Ssh4, some acting redundantly. We discuss the similarities and differences in the requirements for regulation of different transporters.  相似文献   

15.
The amino acid transporter SN1 with substrate specificity identical to the amino acid transport system N is expressed mainly in astrocytes and hepatocytes where it accomplishes Na(+)-coupled glutamine uptake and efflux. To characterize properties and regulation of SN1, substrate-induced currents and/or radioactive glutamine uptake were determined in Xenopus oocytes injected with cRNA encoding SN1, the ubiquitin ligase Nedd4-2, and/or the constitutively active serum and glucocorticoid inducible kinase S422DSGK1, its isoform SGK3, and the constitutively active protein kinase B T308D,S473DPKB. The substrate-induced currents were enhanced by increasing glutamine and/or Na(+) concentrations, hyperpolarization, and alkalinization (pH 8.0). They were inhibited by acidification (pH 6.0). Coexpression of Nedd4-2 downregulated SN1-mediated transport, an effect reversed by coexpression of S422DSGK1, SGK3, and T308D,S473DPKB. It is concluded that SN1 is a target for the ubiquitin ligase Nedd4-2, which is inactivated by the serum and glucocorticoid inducible kinase SGK1, its isoform SGK3, and protein kinase B.  相似文献   

16.
Geminiviruses include a large number of single‐stranded DNA viruses that are emerging as useful tools to dissect many fundamental processes in plant hosts. However, there have been no reports yet regarding the genetic dissection of the geminivirus–plant interaction. Here, a high‐throughput approach was developed to screen Arabidopsis activation‐tagged mutants which are resistant to geminivirus Beet severe curly top virus (BSCTV) infection. A mutant, lsb1 (less susceptible to BSCTV 1), was identified, in which BSCTV replication was impaired and BSCTV infectivity was reduced. We found that the three genes closest to the T‐DNA were up‐regulated in lsb1, and the phenotypes of lsb1 could only be recapitulated by the overexpression of GDU3 (GLUTAMINE DUMPER 3), a gene implicated in amino acid transport. We further demonstrated that activation of LSB1/GDU3 increased the expression of components in the salicylic acid (SA) pathway, which is known to counter geminivirus infection, including the upstream regulator ACD6. These data indicate that up‐regulation of LSB1/GDU3 affects BSCTV infection by activating the SA pathway. This study thus provides a new approach to study of the geminivirus–host interaction.  相似文献   

17.
The intracellular trafficking of Arn1, a ferrichrome transporter in Saccharomyces cerevisiae, is controlled in part by the binding of ferrichrome to the transporter. In the absence of ferrichrome, Arn1 is sorted directly from the Golgi to endosomes. Ferrichrome binding triggers the redistribution of Arn1 to the plasma membrane, whereas ferrichrome transport is associated with the cycling of Arn1 between the plasma membrane and endosomes. Here, we report that the clathrin adaptor Gga2 and ubiquitination by the Rsp5 ubiquitin ligase are required for trafficking of Arn1. Gga2 was required for Golgi-to-endosomal trafficking of Arn1, which was sorted from endosomes to the vacuole for degradation. Trafficking into the vacuolar lumen was dependent on ubiquitination by Rsp5, but ubiquitination was not required for plasma membrane accumulation of Arn1 in the presence of ferrichrome. Retrograde trafficking via the retromer complex or Snx4 was also not required for plasma membrane accumulation. High concentrations of ferrichrome led to higher levels of ubiquitination of Arn1, but they did not induce degradation. Without this ubiquitination, Arn1 remained on the plasma membrane, where it was active for transport. Arn1 was preferentially modified with polyubiquitin chains on a cluster of lysine residues at the amino terminus of the transporter.  相似文献   

18.
19.
SCF(Skp2) is a multisubunit E3 ubiquitin ligase responsible for ubiquitination of cell cycle inhibitor p27. Ubiquitination of p27 requires an adapter protein, Cks1, to be in direct association with Skp2. The exact interface between Skp2 and Cks1 has not been elucidated. Here we have reported the definition of the critical functional interface between Skp2 and Cks1. We have identified eight amino acid residues in two discrete regions of Skp2 that are engaged in Cks1 binding. Mutation of any of these eight residues alone or in combination results in the loss of Cks1 association and negates Skp2-dependent p27 ubiquitination. These eight amino acid residues map on the same side of the Skp2 structure and likely constitute a functional binding surface for Cks1. Four of the eight amino acid residues are located in the largely unstructured carboxyl-terminal tail region of Skp2. These results uncovered the specificity of the Skp2-Cks1 interaction and reveal a critical function for the structurally flexible carboxyl-terminal tail region of Skp2 in Cks1 recognition and substrate ubiquitination.  相似文献   

20.
Rabex-5, the mammalian orthologue of yeast Vps9p, is a guanine nucleotide exchange factor for Rab5. Rabex-5 forms a tight complex with Rabaptin-5, a multivalent adaptor protein that also binds to Rab4, Rab5, and to domains present in gamma-adaptins and the Golgi-localized, gamma-ear-containing, ARF-binding proteins (GGAs). Rabaptin-5 augments the Rabex-5 exchange activity, thus generating GTP-bound, membrane-associated Rab5 that, in turn, binds Rabaptin-5 and stabilizes the Rabex-5.Rabaptin-5 complex on endosomes. Although the Rabex-5.Rabaptin-5 complex is critical to the regulation of endosomal fusion, the structural determinants of this interaction are unknown. Likewise, the possible binding and covalent attachment of ubiquitin to Rabex-5, two modifications that are critical to the function of yeast Vps9p in endosomal transport, have not been studied. In this study, we identify the 401-462 and 551-661 coiled-coils as the regions in Rabex-5 and Rabaptin-5, respectively, that interact with one another. We also demonstrate that Rabex-5 undergoes ubiquitination and binds ubiquitin, though not via its proposed C-terminal CUE-like domain. Instead, the N-terminal region of Rabex-5 (residues 1-76), comprising an A20-like Cys2/Cys2 zinc finger and an adjacent alpha-helix, is important for ubiquitin binding and ubiquitination. Importantly, we demonstrate that the Rabex-5 zinc finger displays ubiquitin ligase (E3) activity. These observations extend our understanding of the regulation of Rabex-5 by Rabaptin-5. Moreover, the demonstration that Rabex-5 is a ubiquitin ligase that binds ubiquitin and undergoes ubiquitination indicates that its role in endosome fusion may be subject to additional regulation by ubiquitin-dependent modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号