首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated the kinds of mutations induced when a shuttle vector containing covalently bound residues of the (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) replicates in the monkey kidney cell line COS7. The target for detecting mutations was the 200-base pair gene for a tyrosine suppressor tRNA (supF), inserted at the EcoRI site in shuttle vector p3AC (Sarkar et al., Mol. Cell. Biol. 4:2227-2230, 1984). When introduced by transformation, a functioning supF gene in progeny plasmid recovered from COS7 cells allows suppression of a lacZ amber mutation in the indicator Escherichia coli host. Treatment of p3AC with BPDE caused a linear increase in the number of BPDE residues bound per plasmid. Untreated plasmids and plasmids containing 6.6 BPDE residues were transfected into COS7 cells, and the progeny were assayed for mutations in the supF gene. The frequency of mutants generated during replication of the BPDE-treated plasmids was not higher than that from untreated plasmids, but the two populations differed markedly in the kinds of mutations they contained. Gel electrophoresis analysis of the size alterations of 77 mutant plasmids obtained with untreated DNA and 45 obtained with BPDE-treated DNA showed that the majority of the mutant progeny of untreated plasmids exhibited gross alterations, principally large deletions. In contrast, the majority of the mutants generated during replication of the BPDE-treated plasmids contained only minor alterations, principally point mutations. Sequence analysis of progeny of untreated plasmids containing putative point mutations showed insertions and deletions of bases and a broad spectrum of base substitutions; in those from BPDE-treated plasmids, all base substitutions involved guanosine . cystosine pairs.  相似文献   

2.
An SV40-based shuttle vector, pZ189, carrying a bacterial suppressor tRNA target gene (supF), was treated with radiolabeled polycyclic aromatic carcinogens and the number of covalently bound residues (adducts) per plasmid was determined. The plasmids were transfected into human cell line 293, allowed to replicate, and the progeny plasmids rescued and assayed for the frequency of supF mutants. The agents tested were the 7,8-diol-9,10-epoxide of benzo(a)pyrene (BPDE) and 1-nitrosopyrene (1-NOP). With each agent there was a linear increase in the frequency of supF mutants as a function of the number of DNA adducts formed, reaching frequencies 15 to 25 times higher than the background frequency of 1.4 x 10(-4). When compared on the basis of adducts formed per plasmid BPDE, which forms its principal DNA adduct at the N2 position of guanine, was approximately four times more mutagenic than 1-NOP, which binds principally at the C8 position of guanine. This difference in mutagenic effectiveness may reflect intrinsic differences in the nature of the adducts and their location in the DNA molecule, but it could also reflect a difference in the rate of removal of particular adducts by nucleotide excision repair since the 293 host cell line excised BPDE-induced adducts from genomic DNA at least three times slower than 1-NOP-induced adducts. Agarose gel electrophoresis and DNA sequencing analysis of mutants derived from untreated plasmids showed that the majority (70%) involved deletions, insertions, or altered gel mobility (gross rearrangements). In contrast, the majority of those derived from carcinogen-treated plasmids were base substitutions. DNA sequencing of 86 unequivocally independent mutants derived from BPDE-treated plasmid and 60 from 1-NOP-treated plasmid indicated that 70% to 80% contained a single base substitution, 5%-10% had two base substitutions, and 4%-10% had small insertions or deletions (one or two basepairs). The majority (83%) of the base substitutions in mutants from BPDE- or 1-NOP-treated plasmid were transversions, mainly G.C----T.A. Each carcinogen produced its own spectrum of mutations.  相似文献   

3.
The stability of an Epstein-Barr virus (EBV)-simian virus 40 (SV40) hybrid shuttle vector, the p205-GTI plasmid, was analyzed in human cells during EBV- or SV40-type replication mode. When the p205-GTI plasmid was maintained as an episomal EBV vector in the human 293 cell line, no rearrangement was detected. To induce the SV40 replication mode, cells containing the episomal p205-GTI plasmid were either transfected with vectors carrying the T antigen gene or infected with SV40. Surprisingly, we observed both production and amplification of different classes of recombinant molecules. Particular types of modifications were found in most of the recombinants. The most striking rearrangement was a duplication of the promoter and enhancer regions of SV40 which was inserted in the thymidine kinase (TK) promoter. This recombination process involved a few bases of homology, and one of the recombination junctions implicated the GC boxes which constitute the essential components of the TK and SV40 early promoters. Our results suggest that a combination of a low level of base homology and a specific DNA sequence function (promoter and enhancer sites) leads to a very high level of recombinational activity during T-antigen-dependent plasmid replication.  相似文献   

4.
To analyse mutations that arise in mammalian cells we have used a SV40::plasmid shuttle vector containing a portion of the E. coli lacZ gene. We have found that following transfection into monkey Cos-7 cell mutations are not detected in the recovered plasmids at 24 h post transfection, but are found at 48 h post transfection, after the onset of DNA replication. Analysis of the mutant plasmids shows that in almost all cases the mutant phenotype is caused by a deletion or rearrangement of the lacZ gene in the shuttle vector.  相似文献   

5.
A simian virus 40-based shuttle vector was used to characterize UV-induced mutations generated in mammalian cells. The small size and placement of the mutagenesis marker (the supF suppressor tRNA gene from Escherichia coli) within the vector substantially reduced the frequency of spontaneous mutations normally observed after transfection of mammalian cells with plasmid DNA; hence, UV-induced mutations were easily identified above the spontaneous background. UV-induced mutations characterized by DNA sequencing were found primarily to be base substitutions; about 56% of these were single-base changes, and 17% were tandem double-base changes. About 24% of the UV-induced mutants carried multiple mutations clustered within the 160-base-pair region sequenced. The majority (61%) of base changes were the G . C----A . T transitions; the other transition (A . T----G . C) and all four transversions occurred at about equal frequencies. Hot spots for UV mutagenesis did not correspond to hot spots for UV-induced photoproduct formation (determined by a DNA synthesis arrest assay); in particular, sites of TT dimers were underrepresented among the UV-induced mutations. These observations suggest to us that the DNA polymerase(s) responsible for mutation induction exhibits a localized loss of fidelity in DNA synthesis on UV-damaged templates such that it synthesizes past UV photoproducts, preferentially inserting adenine, and sometimes misincorporates bases at undamaged sites nearby.  相似文献   

6.
We have developed an episomal replicating expression vector in which the SV40 gene coding for the large T-antigen was replaced by chromosomal scaffold/matrix attached regions. Southern analysis as well as vector rescue experiments in CHO cells and in Escherichia coli demonstrate that the vector replicates episomally in CHO cells. It occurs in a very low copy number in the cells and is stably maintained over more than 100 generations without selection pressure.  相似文献   

7.
SIVmac Nef contains two N-terminal tyrosines that were proposed to be part of an SH2-ligand domain and/or a tyrosine-based endocytosis signal and a putative SH3-ligand domain (P(104)xxP(107)). In the present study, we investigated the effects of combined mutations in these tyrosine and proline residues on simian immunodeficiency virus (SIV) Nef interactions with the cellular signal transduction and endocytic machinery. We found that mutation of Y(28)F, Y(39)F, P(104)A, and P(107)A (FFAA-Nef) had little effect on Nef functions such as the association with the cellular tyrosine kinase Src, downregulation of cell surface expression of CD4 and class I major histocompatibility complex, and enhancement of virion infectivity. However, mutations in the PxxP sequence reduced the ability of Nef to stimulate viral replication in primary lymphocytes. Three macaques infected with the SIVmac239 FFAA-Nef variant showed high viral loads during the acute phase of infection. Reversions in the mutated prolines were observed between 12 and 20 weeks postinfection. Importantly, reversion of A(107)-->P, which restored the ability of Nef to coprecipitate a 62-kDa phosphoprotein in in vitro kinase assays, did not precede the development of a high viral load. The Y(28)/Y(39)-->F(28)/F(39) substitutions did not revert. In conclusion, mutations in both the tyrosine residues and the putative SH3 ligand domain apparently do not disrupt major aspects of SIV Nef function in vivo.  相似文献   

8.
We are using an SV40-based shuttle vector, pZ189, to study mechanisms of mutagenesis in mammalian cells. The vector can be treated with mutagens in vitro and replicated in animal cells; resulting mutants can be selected and amplified in bacteria for DNA sequencing. This versatile vector system has allowed us to explore several different questions relating to the mutagenic process. We have studied the direct effects of template damage caused by UV or benzo[a]pyrene diolepoxide by treating vector DNA with these agents and then replicating the damaged DNA in monkey cells. Mutational mechanisms were deduced from the spectrum of mutations induced in the supF target gene of the vector DNA. To study the role of indirect effects of DNA damage on mutagenesis in mammalian cells, we have treated the cells and the vector DNA separately with DNA-damaging agents. We find that pretreatment of cells with DNA-damaging agents, or with conditioned medium from damaged cells, causes an enhancement of mutagenesis of a UV-damaged vector. Thus, DNA damage can act indirectly to enhance the mutagenic process. We also have preliminary evidence that pZ189 can be used in an in vitro DNA replication system to study the process of mutation fixation on the biochemical level. We believe that the pZ189 vector will prove to be as useful for in vitro studies of mutational mechanisms as it has been for in vivo studies.  相似文献   

9.
The DNA sequence changes for 54 mutations induced in human cells by the alkylating agent ethyl methanesulfonate are reported. The mutations were obtained by using a shuttle vector system with the bacterial lacI gene as the target. Of the 54 mutations obtained, 53 were G:C to A:T transitions.  相似文献   

10.
When a shuttle vector containing a tyrosine suppressor tRNA (supF) gene as a target for mutagenesis replicated in a monkey kidney cell line, the frequency of SupF+ mutations was 2.3 +/- 0.5 x 10(-3). When the host cells were treated with ethyl methanesulfonate 40 h before transfection, a 10-fold increase in SupF+ mutation frequency was observed. These results supported the hypothesis that a damage-inducible mutagenic pathway exists in mammalian cells and also demonstrated the utility of this shuttle vector for the study of mutagenesis in mammalian cells.  相似文献   

11.
Mutations induced by UVB (313-nm) radiation, a wavelength in the region of peak effectiveness for sunlight-induced skin cancer in humans, have been analyzed at the sequence level in simian cells by using a plasmid shuttle vector (pZ189). We find that significant differences exist between the types of mutations induced by this solar wavelength and those induced by nonsolar UVC (254-nm) radiation. Compared with 254-nm radiation, 313-nm radiation induces more deletions and insertions in the region sequenced. In addition, although the types of base substitutions induced by the two wavelengths are broadly similar (in both cases, the majority of changes occur at G-C base pairs and the G-C to A-T transition is predominant), an analysis of the distribution of these base changes within the supF gene following irradiation at 313 nm reveals additional hot spots for mutation not seen after irradiation at 254 nm. These hot spots are shown to arise predominantly at sites of mutations involving multiple base changes, a class of mutations which arises more frequently at the longer solar wavelength. Lastly, we observed that most of the sites at which mutational hot spots arise after both UVC and UVB irradiation of the shuttle vector are also sites at which mutations arise spontaneously. Thus, a common mechanism may be involved in determining the site specificity of mutations, in which the DNA structure may be a more important determinant than the positions of DNA photoproducts.  相似文献   

12.
13.
A high molecular weigh mucus glycoprotein has been isolated from submandibular saliva of caries-resistant and caries-susceptible individual by a procedure involving fractionation on Bio-Gel P-100 and A-50 columns followed by equilibrium density-gradient centrifugation in CsCl. The purified caries-resistant mucus glycoprotein displayed a buoyant density of 1.50 and accounted for 9.5% of the dry weight of caries-resistant saliva. The caries-susceptible mucus glycoprotein representd 14.1% of the dry weight of caries-susceptible saliva and gave a buoyant density of 1.43. Both glycoproteins exhibited similar protein and carbohydrate content, but the caries-resistant mucus glycoprotein contained 28.7% less associated lipids and 3-times less covalently bound fatty acids than the caries-susceptible mucus glycoprotein. The associated lipids were represented by neutral lipids, glycolipids and phospholipids, whereas the covalently bound fatty acids consisted mainly of hexadecanoate, octadecanoate and docosanoate. Extraction of associated lipids caused the caries-resistant glycoprotein to band in CsCl gradient at the density of 1.54 and caused the caries-susceptible glycoprotein to band at the density of 1.52. A further shift in the buoyant densities occurred following removal of the covalently bound fatty acids, and both glycoproteins banded at the density of 1.57. While the intact caries-resistant and caries-susceptibel glycoproteins were susceptible to proteolysis by pronase, the lipid-rich caries-susceptible glycoprotein was degraded to a lesser extent. Extraction of associated lipids increased the degradation of both glycoproteins, but the caries-susceptible glycoprotein still remained 25% less susceptible. However, the susceptibility to pronase of the delipidated and deacylated caries-resistant and caries-susceptible glycoproteins was essentially identical. The caries-resistant and caries-susceptible mucus glycoproteins also differed in susceptibility to peptic degradation. The apparent Km values for intact caries-resistant and caries-susceptible glycoproteins were 10.5 · 10−7 M and 8.1 · 10−7 M, while the values for the delipidated and deacylated caries-resistant and caries-susceptible glycoproteins were 13.0 · 10−7 M and 12.4 · 10−7 M. The results suggest that the differences in the content of associated lipids and covalently bound fatty acids are responsible for the different physicochemical characteristics of caries-resistant and caries-susceptible salivary mucus glycoproteins, which may be determining falctors in the resistance to caries.  相似文献   

14.
Wang J  Yu S  Jiao S  Lv X  Ma M  Zhu BZ  Du Y 《Mutation research》2012,729(1-2):16-23
Tetrachlorohydroquinone (TCHQ) is a major toxic metabolite of the widely used wood preservative, pentachlorophenol (PCP), and it has also been implicated in PCP genotoxicity. However, the underlying mechanisms of genotoxicity and mutagenesis induced by TCHQ remain unclear. In this study, we examined the genotoxicity of TCHQ by using comet assays to detect DNA breakage and formation of TCHQ-DNA adducts. Then, we further verified the levels of mutagenesis by using the pSP189 shuttle vector in A549 human lung carcinoma cells. We demonstrated that TCHQ causes significant genotoxicity by inducing DNA breakage and forming DNA adducts. Additionally, DNA sequence analysis of the TCHQ-induced mutations revealed that 85.36% were single base substitutions, 9.76% were single base insertions, and 4.88% were large fragment deletions. More than 80% of the base substitutions occurred at G:C base pairs, and the mutations were G:C to C:G, G:C to T:A or G:C to A:T transversions and transitions. The most common types of mutations in A549 cells were G:C to A:T (37.14%) and A:T to C:G transitions (14.29%) and G:C to C:G (34.29%) and G:C to T:A (11.43%) transversions. We identified hotspots at nucleotides 129, 141, and 155 in the supF gene of plasmid pSP189. These mutation hotspots accounted for 63% of all single base substitutions. We conclude that TCHQ induces sequence-specific DNA mutations at high frequencies. Therefore, the safety of using this product would be carefully examined.  相似文献   

15.
We previously established a transgenic Chinese hamster CHL/IU cell line, designated as KN63, for concurrent analysis of gene mutations and chromosome aberrations. The KN63 cell line contains copies of a shuttle vector with the Escherichia coli gpt gene as a mutational target in its chromosome. To evaluate the sensitivity of the cell line to various types of mutagens, methyl methanesulfonate (MMS), N-ethyl-N-nitrosourea (ENU), mitomycin C (MMC), vincristine sulfate (VIN) and C.I. basic red 9 hydrochloride (CIB) were assayed. KN63 cells were treated with each test chemical and gene mutations were detected in the gpt gene of the shuttle vector rescued from the KN63 cell genome into an E. coli host. Chromosome aberrations were concurrently evaluated by conventional metaphase analysis. MMS, ENU and MMC induced both gene mutations and structural chromosome aberrations in KN63 cells, with more efficient induction of the latter. VIN, a well-known aneugen, produced only numerical changes to chromosomes, while CIB was negative for both types of alteration. KN63 cells were as sensitive to MMS, ENU, MMC and VIN as Chinese hamster cell lines such as CHL, CHO and V79 cells. The characteristics of test chemicals indicated by this system should be useful for understanding endpoints in chemical mutagenesis.  相似文献   

16.
Radioactive alkylating 5'-[32P]-[4-(N-2-chlorethyl)N-methylaminobenzyl]-5'-phospham ide decadeoxyribothymidilate derivatives containing either free hydroxyl group (reagent I), hydrophobic cholesterol residue (reagent II) or polyaromatic phenazinium residue (reagent III) at 3'-termini were synthesized. The products were purified by HPLC and used for oligonucleotide-directed alkylating of DNA in isolated rat liver nuclei, Krebs-2 ascite carcinoma cells and L-929 murine fibroblasts. The uptake of reagent II by the cells was two orders of magnitude higher than that of reagent I and III. Intracellular alkylation of DNA by reagent II both in isolated nuclei and in living cells was about one order of magnitude higher than in the case of reagent I. The presence of phenazinium at 3'-termini of the reagent III leads to a sufficient increase of the alkylation extent compared to reagent I despite a quite low extent of its uptake by the cells.  相似文献   

17.
18.
We report the X-ray crystal structures and rate constants for proton transfer in site-specific mutants of human carbonic anhydrase III (HCA III) that place a histidine residue in the active-site cavity: K64H, R67H, and K64H-R67N HCA III. Prior evidence from the exchange of 18O between CO2 and water measured by mass spectrometry shows each mutant to have enhanced proton transfer in catalysis compared with wild-type HCA III. However, His64 in K64H and K64H-R67N HCA III have at most a capacity for proton transfer that is only 13% that of His64 in HCA II. This reduced rate in mutants of HCA III is associated with a constrained side-chain conformation of His64, which is oriented outward, away from the active-site zinc in the crystal structures. This conformation appears stabilized by a prominent pi stacking interaction of the imidazole ring of His64 with the indole ring of Trp5 in mutants of HCA III. This single orientation of His64 in K64H HCA III predominates also in a double mutant K64H-R67N HCA III, indicating that the positive charge of Arg67 does not influence the observed conformation of His64 in the crystal structure. Hence, the structures and catalytic activity of these mutants of HCA III containing His64 account only in small part for the lower activity of this isozyme compared with HCA II. His67 in R67H HCA III was also shown to be a proton shuttle residue, having a capacity for proton transfer that was approximately four times that of His64 in K64H HCA III. This is most likely due to its proximity and orientation inward towards the zinc-bound solvent. These results emphasize the significance of side chain orientation and range of available conformational states as characteristics of an efficient proton shuttle in carbonic anhydrase.  相似文献   

19.
Dothistromin is a metabolite produced by Dothistromin pini and Cercospora arachidicola. The latter fungus is a pathogen of the peanuts and thus the mycotoxin may be a contaminant of foodstuffs. Dothistromin induces a dose-dependent increase in sister-chromatid exchange frequency in Chinese hamster ovary cells and stimulated human lymphocytes. The increased frequency in human lymphocytes seen with dothistromin is significantly higher among lymphocytes from smokers compared with those from non-smokers.  相似文献   

20.
The mutagenic specificities of ethylnitrosourea (ENU), X-rays (+/-)7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7, 8,9,10-tetrahydrobenzo[a]pyrene (BPDE), ICR-191, and N-acetoxy-2-acetylaminofluorene (N-AcO-AAF) were analyzed and compared in diploid human fibroblasts and Salmonella typhimurium. In the human fibroblasts, we compared the frequency of diphtheria toxin (DT)-resistant mutants, presumably induced in the gene coding for elongation factor-2, with the frequency of 6-thioguanine (TG) resistance induced by mutations in the gene coding for hypoxanthine(guanine)phosphoribosyltransferase (HPRT). Recovery of DT-resistant (DTr) cells requires that the mutant EF-2 retain the ability to carry on protein synthesis since the normal EF-2 will be inactivated by DT selection. Therefore, the DTr mutation cannot involve major changes in the gene. In contrast, cells can acquire TG resistance by any mechanism which eliminates HPRT activity, e.g., base substitution, frameshift, deletion, loss of chromosomes. Each agent was assessed by calculating the ratio of the slopes of the dose-response plots (induced variant frequency as a function of dose of the agent used) for the two markers (DTr/TGr variants.). In S. typhimurium we examined the reversion frequency in four histidine-requiring strains bearing forward mutations of the frameshift (TA1538, TA98) or missense (TA1535, TA100) type. ENU, which was predominantly a base substitution mutagen in the bacteria, gave a ratio of DTr to TGr variants of 1.5. As expected of an agent inducing gross chromosomal changes, X-rays induced no revertants in bacteria and in human cells gave a ratio of 0.1. ICR-191 which was predominantly a frameshift mutagen in bacteria gave a ratio of 0.15. In the set of bacterial strains containing the plasmid pKM101, BPDE reverted both frameshift and base substitution mutations. It did not cause reversions in the other set of strains. In human cells BPDE gave a response similar to ENU, i.e., a ratio of DTr/TGr variants of 1.5. As reported by others, N-AcO-AAF was predominantly a frameshift mutagen in bacteria. However, in the human cells it gave a ratio of DTr/TGr variants of 1.5, similar to ENU and BPDE. These results suggest that in human cells, BPDE and N-AcO-AAF, like ENU, yield predominantly base substitutions, while ICR-191 and X-rays largely produce mutations by mechanisms which result in more extensive alterations in the gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号