首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basal cells in the ligule of Isoetes lacustris contain numerousprotein bodies, the contents of which can be digested enzymicallyby pronase and are stained red by treatment with ninhydrin Schiff'sreagent. Two types of protein bodies can be distinguished ultrastructurally:spherically-shaped bodies with granular contents and spindle-likebodies with fibrillar contents. Both are ensheathed by singlemembranes and do not show any solid inclusions within theirmatrix. The protein bodies probably arise from dilatation of the endoplasmicreticulum (ER) cisternae. This conclusion is based upon threeobservations: (a) The protein bodies occasionally show membranecontinuity with the ER; (b) ribosomes and polysomes are frequentlyattached to the protein-body membranes; (c) the contents ofthe protein bodies and of the dilated ER cisternae show similarultrastructural features. The dilatation of the ER cisternae is assumed to be a resultof protein accumulation in the intracisternal space. Based upon the results of polyacrylamide gel electrophoresis,it is likely that the spherically-shaped protein bodies storepredominately two proteins with molecular weights of 51300 and55800 D, while the spindle-like bodies store two proteins withmolecular weights of 92000 and 98000 D. The results presented do not permit a definite conclusion regardingthe function of the ligule of Isoetes lacustris but it is suggestedthat it may have a nutritive role. Isoetes lacustris L., ligule, protein bodies, endoplasmic reticulum, ultrastructure  相似文献   

2.
MEYBERG  M. 《Annals of botany》1988,62(5):537-547
The young developing leaves in the buds of Nymphoides peltataare covered by a hyaline mucilage. The mucilage contains freesugars, polysaccharides and proteins. The most abundant monosaccharidesof the polysaccharide fraction are arabinose and galactose.Therefore, the major component of the mucilage is probably anarabinogalactan or arabinogalactan protein. The mucilage issecreted by glandular trichomes. It is suggested that both thepolysaccharide and the protein fraction of the mucilage aretransported to the plasmamembrane by vesicles of the Golgi apparatus(granulocrine secretion). Secretory proteins are probably synthesizedin the rough endoplasmic reticulum and transported to the Golgiapparatus via transition vesicles. Polysaccharides were localizedin Golgi vesicles by ultracytochemistry. After exocytosis thesecretion is accumulated between the cell wall and the cuticle;this leads to the formation of protrusions on the outer wallsof the glandular cells. Finally, the cuticle is ruptured andthe secretion is released. The biological function of the mucilageis not known. Possibly the mucilage is a lubricant or a protectionfrom desiccation. Nymphoides peltata (S.G. Gmel.) O. Ktz., trichomes, mucilage secretion, cytochemistry, ultrastructure  相似文献   

3.
Young sieve elements from petioles and rachises of Davalliafijiensis Hook were examined with an electron microscope. Evidencewas obtained that implicated both the endoplasmic reticulum(ER) and the Golgi apparatus in the formation of refractivespherules. Numerous connections were observed between smooth,tubular ER and peripheral tubules of the dictyosomes, indicatingthat these two cytoplasmic components are parts of a singleendomembrane system. Davallia fijiensis Hook, endomembrane system, endoplasmic reticulum, dictyosome, refractive spherule, sieve element  相似文献   

4.
BENAYOUN  J.; FAHN  A. 《Annals of botany》1979,43(2):179-181
The ultrastructure of the resin secreting cells of root ductsof young Pinus halepensis seedlings was studied. It is suggestedthat the endoplasmic reticulum (ER) in addition to taking partin resin synthesis also plays a role in transporting the resinfrom the plastids, mitochondria and nuclear envelope to theplasmalemma. By fusing with the plasmalemma the ER releasesthe resin to the outside of the protoplast. The resin producedin the ground cytoplasm and by the Golgi apparatus seems tobe eliminated by plasmalemma invaginations. Pinus halepensis, resin secretion, root ducts, endoplasmic reticulum  相似文献   

5.
Brefeldin A (BFA), a fungal fatty acid derivative, is a potentagent for disrupting the Golgi apparatus in plant and animalcells. We have examined its action using marker antibodies whichrecognize an epitope in the plant Golgi apparatus (JIM 84),and for proteins held in the endoplasmic reticulum by the HDELER-retention signal (2E7), in combination with double immunolabelling.In maize root cells, disruption of the ER occurs after breakdownof the Golgi apparatus is initiated. The redistribution of theGolgi is shown to be predominantly separate from that of theER, and as with the Golgi, the action of BFA on the ER is alsoreversible. The mode of action of BFA on the ER and Golgi ofplant cells is compared with that described for animal cells. Key words: Zea mays L, Brefeldin A, plant cells, endoplasmic reticulum, Golgi apparatus  相似文献   

6.
The endoplasmic reticulum and Golgi apparatus play key roles in regulating the folding, assembly, and transport of newly synthesized proteins along the secretory pathway. We find that the divalent cation manganese disrupts the Golgi apparatus and endoplasmic reticulum (ER). The Golgi apparatus is fragmented into smaller dispersed structures upon manganese treatment. Golgi residents, such as TGN46, beta1,4-galactosyltransferase, giantin, and GM130, are still segregated and partitioned correctly into smaller stacked fragments in manganese-treated cells. The mesh-like ER network is substantially affected and peripheral ER elements are collapsed. These effects are consistent with manganese-mediated inhibition of motor proteins that link membrane organelles along the secretory pathway to the cytoskeleton. This divalent cation thus represents a new tool for studying protein secretion and membrane dynamics along the secretory pathway.  相似文献   

7.
Sphingoid long-chain base 1-phosphates act as bioactive lipid molecules in eukaryotic cells. In budding yeast, long-chain base 1-phosphates are synthesized mainly by the long-chain base kinase Lcb4. We recently reported that, soon after yeast cells enter into the stationary phase, Lcb4 is rapidly degraded by being delivered to the vacuole in a palmitoylation- and phosphorylation-dependent manner. In this study, we investigated the complete trafficking pathway of Lcb4, from its synthesis to its degradation. After membrane anchoring by palmitoylation at the Golgi apparatus, Lcb4 is delivered to the plasma membrane (PM) through the late Sec pathway and then to the endoplasmic reticulum (ER). The yeast ER consists of a cortical network juxtaposed to the PM (cortical ER) with tubular connections to the nuclear envelope (nuclear ER). Remarkably, the localization of Lcb4 is restricted to the cortical ER. As the cells reach the stationary phase, G(1) cell cycle arrest initiates Lcb4 degradation and its delivery to the vacuole via the Golgi apparatus. The protein transport pathway from the PM to the ER found in this study has not been previously reported. We speculate that this novel pathway is mediated by the PM-ER contact.  相似文献   

8.
Localisation of -amylase (EC 3.2.1.1) in barley aleurone cells treated with gibberellic acid has been achieved using protein A-gold-labelled polyclonal antibodies. Gold particles were located almost exclusively over the lumen of the rough endoplasmic reticulum and cisternae of the Golgi apparatus. The label was most concentrated over the Golgi apparatus. This indicates that the Golgi is involved in the secretion of -amylase protein from aleurone cells.Abbreviations ER endoplasmic reticulum - GA3 gibberellic acid - PBS phosphate-buffered saline  相似文献   

9.
植物表达分泌蛋白的运输及定位   总被引:1,自引:0,他引:1  
分泌途径主要由内膜系统构成,内质网和高尔基体对于分泌蛋白的运输及定位具有重要作用。分泌蛋白的运输包括顺行途径和逆行途径。蛋白质通过质流和受体介导的途径运输到小泡中。在植物中,分泌蛋白的运输主要通过小泡和相连的小管来完成。分子伴侣和质量控制不仅能优化新合成蛋白的折叠和组装,而且去除了有折叠缺陷的蛋白。分泌蛋白的定位需要特定的信号肽,而高尔基体固有蛋白以依赖跨膜长度的方式,沿着分泌途径的细胞器分布。本文对植物表达分泌蛋白的分泌途径及定位、相关的分子伴侣和质量控制进行了综述。  相似文献   

10.
Dicumarol (3,3'-methylenebis[4-hydroxycoumarin]) is an inhibitor of brefeldin-A-dependent ADP-ribosylation that antagonises brefeldin-A-dependent Golgi tubulation and redistribution to the endoplasmic reticulum. We have investigated whether dicumarol can directly affect the morphology of the Golgi apparatus. Here we show that dicumarol induces the breakdown of the tubular reticular networks that interconnect adjacent Golgi stacks and that contain either soluble or membrane-associated cargo proteins. This results in the formation of 65-120-nm vesicles that are sometimes invaginated. In contrast, smaller vesicles (45-65 nm in diameter, a size consistent with that of coat-protein-I-dependent vesicles) that excluded cargo proteins from their lumen are not affected by dicumarol. All other endomembranes are largely unaffected by dicumarol, including Golgi stacks, the ER, multivesicular bodies and the trans-Golgi network. In permeabilized cells, dicumarol activity depends on the function of CtBP3/BARS protein and pre-ADP-ribosylation of cytosol inhibits the breakdown of Golgi tubules by dicumarol. In functional experiments, dicumarol markedly slows down intra-Golgi traffic of VSV-G transport from the endoplasmic reticulum to the medial Golgi, and inhibits the diffusional mobility of both galactosyl transferase and VSV-G tagged with green fluorescent protein. However, it does not affect: transport from the trans-Golgi network to the cell surface; Golgi-to-endoplasmic reticulum traffic of ERGIC58; coat-protein-I-dependent Golgi vesiculation by AlF4 or ADP-ribosylation factor; or ADP-ribosylation factor and beta-coat protein binding to Golgi membranes. Thus the ADP-ribosylation inhibitor dicumarol induces the selective breakdown of the tubular components of the Golgi complex and inhibition of intra-Golgi transport. This suggests that lateral diffusion between adjacent stacks has a role in protein transport through the Golgi complex.  相似文献   

11.
We have studied the role of a previously described tubulovesicular compartment near the cis-Golgi apparatus in endoplasmic reticulum (ER)-to-Golgi protein transport by light and immunoelectron microscopy in Vero cells. The compartment is defined by a 53-kDa transmembrane protein designated p53. When transport of the vesicular stomatitis virus strain ts045 G protein was arrested at 39.5 degrees C, the G protein accumulated in the ER but had access to the p53 compartment. At 15 degrees C, the G protein was exported from the ER into the p53 compartment which formed a compact structure composed of vesicular and tubular profiles in close proximity to the Golgi. Upon raising the temperature to 32 degrees C, the G protein migrated through the Golgi apparatus while the p53 compartment resumed its normal structure again. These results establish the p53 compartment as the 15 degrees C intermediate of the ER-to-Golgi protein transport pathway.  相似文献   

12.
Each glandular hair of Nyrnphoides peltaturn (Gmel.) O. Kuntz consisted of only one row of cylindar cells with secretory function. The hairs originated from the protoderm cells on the adaxial surface of the second leaf primordium from the shoot apex. Cells of the glandular hairs prossessed dense cytoplast during the secretory period, but the vacuoles were very small. There were not only abundant mitochondria, Golgi bodies and endoplasmic reticulum in the glandular hair cells, but also many plasmodesmata. The authors' research indicated that the mucilage was carried to the edge of the cells by the membranous multilamellar bodies and the vesicles from both Golgi bodies and endoplasmic reticulum. The mucilage was secreted extracellularly by either exocytosis or ecrine secretion. The side walls of the glandular hairs swelled because of mucilage mass accumulation in the walls. The mucilage, being tested to be composed of polysaccharides and a trace of protein, played an important role in protecting the development of the vegetative buds of N. peltatum.  相似文献   

13.
T. Noguchi  H. Watanabe  R. Suzuki 《Protoplasma》1998,201(3-4):202-212
Summary The effects of brefeldin A (BFA) on the structure of the Golgi apparatus, the nuclear envelope, and the endoplasmic reticulum (ER), and on the thiamine pyrophosphatase (TPPase) activity in these organelles were examined in a green alga,Scenedesmus acutus, to obtain evidence for the existence of a retrograde transport from the Golgi apparatus to the ER via the nuclear envelope. InScenedesmus, Golgi bodies are situated close to the nuclear envelope throughout the cell cycle and receive the transition vesicles not directly from the ER, but from the nuclear envelope. BFA induced the disassembly of Golgi bodies and an increase in the ER cisternae at the trans-side of decomposed Golgi bodies in interphase cells and multinuclear cells before septum formation. The accumulated ER cisternae connected to the nuclear envelope at one part. TPPase activity was detected in all cisternae of Golgi bodies, but not in the nuclear envelope or the ER in nontreated cells. On the contrary, in BFA-treated cells, TPPase activity was detected in the nuclear envelope and the ER in addition to the decomposed Golgi bodies. When septum-forming cells were treated with BFA, the disassembly of Golgi bodies was less than that in interphase cells, and TPPase activity was detected in the Golgi cisternae but not in the nuclear envelope or the ER. These results suggest mat BFA blocks the anterograde transport from the nuclear envelope to the Golgi bodies but does not block the retrograde transport from the Golgi bodies to the nuclear envelope in interphase and multinuclear cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TPPase thiamine pyrophosphatase  相似文献   

14.
Live cell imaging methods were used to characterize goblet cells expressing a MUC5AC domain fused to enhanced green fluorescent protein that labels the granule lumen. Golgi complex and endosome/lysosome elements largely resided in the periphery of the granular mass. On the contrary, a tubular meshwork of endoplasmic reticulum (ER) was in close contact with the mucin granules. This meshwork could be identified in fixed native human bronchial goblet cells labeled with an anti-calreticulin antibody. The potential biological significance of this ER network for mucin secretion is discussed.  相似文献   

15.
The tyrosine kinase Src is present on the Golgi membranes. Its role, however, in the overall function and organization of the Golgi apparatus is unclear. We have found that in a cell line called SYF, which lacks the three ubiquitous Src-like kinases (Src, Yes, and Fyn), the organization of the Golgi apparatus is perturbed. The Golgi apparatus is composed of collapsed stacks and bloated cisternae in these cells. Expression of an activated form of Src relocated the KDEL receptor (KDEL-R) from the Golgi apparatus to the endoplasmic reticulum. Other Golgi-specific marker proteins were not affected under these conditions. Because of the specific effect of Src on the location of KDEL-R, we tested whether protein transport between ER and the Golgi apparatus involves Src. Transport of Pseudomonas exotoxin, which is transported to the ER by binding to the KDEL-R is accelerated by inhibition or genetic ablation of Src. Protein transport from ER to the Golgi apparatus however, is unaffected by Src deletion or inhibition. We propose that Src has an appreciable role in the organization of the Golgi apparatus, which may be linked to its involvement in protein transport from the Golgi apparatus to the endoplasmic reticulum.  相似文献   

16.
JOEL  D. M.; FAHN  A. 《Annals of botany》1980,46(6):785-790
Mango fruit ducts secrete a protein-carbohydrate mucilage inaddition to lipophilic material. This mucilage is secreted inspecial duct regions. Loops of ER elements seem to delimit cytoplasmicportions rich in ribosomes forming pseudo-vacuoles which eventuallybecome bound by a single membrane of ER origin. It is suggestedthat the protein is produced and accumulates in the pseudo-vacuoleswhich become storage bodies. Carbohydrates are added to thecontent of these bodies by Golgi vesicles. The cytoplasm becomesosmiophilic and contracts before disintegration, and the mucilagepasses into the space between plasmalemma and cell wall. Afterthe cell breaks down the mucilage is released into the ductcavity. Mangifera indica L., mango, Anacardiaceae, resin ducts, secretion, mucilage, ultrastructure  相似文献   

17.
D. C. Sigee 《Protoplasma》1976,90(3-4):333-341
Summary The ligule ofSelaginella kraussiana shows active incorporation of tritiated glucose in the central region; particularly into the Golgi system, but also into endoplasmic reticulum, mitochondria and cell periphery.Two hours chase in unlabelled glucose reveals a small amount of cell wall formation but most of the label remains in the Golgi bodies. The results suggest that the Golgi system in the mature ligule has the capacity to synthesise some complex carbohydrate, but is relatively inactive in its secretion. This is discussed in relation to the ontogeny and phyllogeny of the ligule.  相似文献   

18.
Proteins leave the endoplasmic reticulum (ER) for the plasma membrane via the classical secretory pathway, but routes bypassing the Golgi apparatus have also been observed. Apical and basolateral protein secretion in epithelial Madin-Darby canine kidney (MDCK) cells display differential sensitivity to Brefeldin A (BFA), where low concentrations retard apical transport, while basolateral transport still proceeds through intact Golgi cisternae . We now describe that BFA-mediated retardation of glycoprotein and proteoglycan transport through the Golgi apparatus induces surface transport of molecules lacking Golgi modifications, possessing those acquired in the ER. Low concentrations of BFA induces apical Golgi bypass, while higher concentrations were required to induce basolateral Golgi bypass. Addition of the KDEL ER-retrieval sequence to model protein cores allowed observation of apical Golgi bypass in untreated MDCK cells. Basolateral Golgi bypass was only observed after the addition of BFA or upon cholesterol depletion. Thus, in MDCK cells, an apical Golgi bypass route can transport cargo from pre-Golgi organelles in untreated cells, while the basolateral bypass route is inducible.  相似文献   

19.
The Florey Lecture, 1992. The secretion of proteins by cells.   总被引:2,自引:0,他引:2  
In eukaryotic cells, protein secretion provides a complex organizational problem. Secretory proteins are first transported, in an unfolded state, across the membrane of the endoplasmic reticulum (ER), and are then carried in small vesicles to the Golgi apparatus and finally to the cell membrane. The ER contains soluble proteins which catalyse the folding of newly synthesized polypeptides. These proteins are sorted from secretory proteins in the Golgi complex: they carry a sorting signal (the tetrapeptide KDEL or a related sequence) that allows them to be selectively retrieved and returned to the ER. This retrieval process also appears to be used by some bacterial toxins to aid their invasion of the cell: these toxins contain KDEL-like sequences and may, in effect, follow the secretory pathway in reverse. The membrane-bound receptor responsible for sorting luminal ER proteins has been identified in yeast by genetic means, and related receptors are found in mammalian cells. Unexpectedly, this receptor has a second role: in yeast it is required to maintain the normal size and function of the Golgi apparatus. By helping to maintain the composition of both ER and Golgi compartments, the KDEL receptor has an important role in the organization of the secretory pathway.  相似文献   

20.
Endocytic routes to the Golgi apparatus   总被引:4,自引:4,他引:0  
 The endocytic routes of labelled lectins as well as cationic ferritin were studied in cells with a regulated secretion, i.e. pancreatic beta cells, and in constitutively secreting cells, i.e. fibroblasts and HepG2 hepatoma cells, paying particular attention to routes into the Golgi apparatus. Considerable amounts of internalised molecules were taken up into the trans Golgi network (TGN) and into Golgi subcompartments in all three cell types as well as in secretory granules of the pancreatic beta cells. The internalised materials did not pass rapidly the TGN and Golgi stacks, but were still present hours after internalisation, being then particularly concentrated in TGN-elements and in the transmost Golgi cisterna. Endocytosed materials reached forming secretory granules present in the TGN. Further, direct fusion between endocytotic vesicles and mature secretory granules was observed. Golgi subcompartments as well as endocytic TGN containing endocytosed materials were in close apposition to specialised regions of the endoplasmic reticulum. The Golgi apparatus including its parts containing endocytosed materials were transformed into a tubular reticulum upon treatment with the fungal metabolite Brefeldin A. Rarely, internalised material was observed in the lumen of the endoplasmic reticulum, thus providing evidence for an endocytic plasma membrane to endoplasmic reticulum route. Accepted: 9 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号