首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Host-parasitoid models including integrated pest management (IPM) interventions with impulsive effects at both fixed and unfixed times were analyzed with regard to host-eradication, host-parasitoid persistence and host-outbreak solutions. The host-eradication periodic solution with fixed moments is globally stable if the host’s intrinsic growth rate is less than the summation of the mean host-killing rate and the mean parasitization rate during the impulsive period. Solutions for all three categories can coexist, with switch-like transitions among their attractors showing that varying dosages and frequencies of insecticide applications and the numbers of parasitoids released are crucial. Periodic solutions also exist for models with unfixed moments for which the maximum amplitude of the host is less than the economic threshold. The dosages and frequencies of IPM interventions for these solutions are much reduced in comparison with the pest-eradication periodic solution. Our results, which are robust to inclusion of stochastic effects and with a wide range of parameter values, confirm that IPM is more effective than any single control tactic.  相似文献   

2.
具有综合控制策略的离散宿主病原体模型(英文)   总被引:1,自引:0,他引:1  
研究了具有综合控制策略的离散宿主病原体模型,并考虑了固定时刻脉冲效应和状态依赖脉冲效应对综合控制策略的影响.对于固定时刻脉冲的模型,分析了宿主根除、宿主病原体共存以及宿主爆发周期解的存在性和稳定性,并给出了宿主根除周期解全局稳定的充分条件.对于状态依赖的脉冲离散模型,数值研究说明宿主最大振幅不超过经济临界值的周期解的存在性以及相应动态行为的复杂性.  相似文献   

3.
A state-dependent impulsive model is proposed for integrated pest management (IPM). IPM involves combining biological, mechanical, and chemical tactics to reduce pest numbers to tolerable levels after a pest population has reached its economic threshold (ET). The complete expression of an orbitally asymptotically stable periodic solution to the model with a maximum value no larger than the given ET is presented, the existence of which implies that pests can be controlled at or below their ET levels. We also prove that there is no periodic solution with order larger than or equal to three, except for one special case, by using the properties of the LambertW function and Poincare map. Moreover, we show that the existence of an order two periodic solution implies the existence of an order one periodic solution. Various positive invariant sets and attractors of this impulsive semi-dynamical system are described and discussed. In particular, several horseshoe-like attractors, whose interiors can simultaneously contain stable order 1 periodic solutions and order 2 periodic solutions, are found and the interior structure of the horseshoe-like attractors is discussed. Finally, the largest invariant set and the sufficient conditions which guarantee the global orbital and asymptotic stability of the order 1 periodic solution in the meaningful domain for the system are given using the Lyapunov function. Our results show that, in theory, a pest can be controlled such that its population size is no larger than its ET by applying effects impulsively once, twice, or at most, a finite number of times, or according to a periodic regime. Moreover, our theoretical work suggests how IPM strategies could be used to alter the levels of the ET in the farmers' favour.  相似文献   

4.
通过建立具有季节变化和综合脉冲控制效应的非自治捕食与被捕食模型,我们得到了保证害虫根除的临界条件,即得到了保证害虫根除周期解全局稳定的充分条件.进而我们讨论了季节性变化以及最优的害虫控制策略实施时间对临界条件的影响.结论显示当害虫种群数量具有季节波动时,系统存在使得临界值达到最小的最优控制策略实施时间.  相似文献   

5.
讨论了一类在两个不同固定时刻分别释放染病害虫和喷洒农药且具有HollingⅡ类传染率的SI模型.通过脉冲微分方程的Floquet理论和小幅扰动技巧,证明了当释放的染病害虫数量超过某个临界值时,系统存在一个渐进稳定的易感害虫根除周期解,否则系统是持续生存的.通过数值模拟,验证了所得结论的正确性及系统动力学行为的复杂性,分析说明了所提出的脉冲控制策略的有效性.  相似文献   

6.
In this paper, we consider the prey-dependent consumption two-prey one-predator models with stage structure for the predator and impulsive effects. By applying the Floquet theory of linear periodic impulsive equation, we show that there exists a globally asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value, that is, the pest population can be eradicated totally. But from the point of ecological balance and saving resources, we only need to control the pest population under the economic threshold level instead of eradicating it totally, and thus, we further prove that the system is uniformly permanent if the impulsive period is larger than some critical value, and meanwhile we also give the conditions for the extinction of one of the two preys and permanence of the remaining species. Thus, we can use the stability of the positive periodic solution and its period to control insect pests at acceptably low levels. Considering population communities always are imbedded in periodically varying environments, and the parameters in ecosystem models may oscillate simultaneously with the periodically varying environments, we add a forcing term into the prey population's intrinsic growth rate. The resulting bifurcation diagrams show that with the varying of parameters, the system experiences process of cycles, periodic windows, periodic-doubling cascade, symmetry breaking bifurcation as well as chaos.  相似文献   

7.
Many factors including pest natural enemy ratios, starting densities, timings of natural enemy releases, dosages and timings of insecticide applications and instantaneous killing rates of pesticides on both pests and natural enemies can affect the success of IPM control programmes. To address how such factors influence successful pest control, hybrid impulsive pest-natural enemy models with different frequencies of pesticide sprays and natural enemy releases were proposed and analyzed. With releasing both more or less frequent than the sprays, a stability threshold condition for a pest eradication periodic solution is provided. Moreover, the effects of times of spraying pesticides (or releasing natural enemies) and control tactics on the threshold condition were investigated with regard to the extent of depression or resurgence resulting from pulses of pesticide applications. Multiple attractors from which the pest population oscillates with different amplitudes can coexist for a wide range of parameters and the switch-like transitions among these attractors showed that varying dosages and frequencies of insecticide applications and the numbers of natural enemies released are crucial. To see how the pesticide applications could be reduced, we developed a model involving periodic releases of natural enemies with chemical control applied only when the densities of the pest reached the given Economic Threshold. The results indicate that the pest outbreak period or frequency largely depends on the initial densities and the control tactics.  相似文献   

8.
Pest management through continuous and impulsive control strategies   总被引:1,自引:0,他引:1  
Zhang H  Jiao J  Chen L 《Bio Systems》2007,90(2):350-361
In this paper, we propose two mathematical models concerning continuous and, respectively, impulsive pest control strategies. In the case in which a continuous control is used, it is shown that the model admits a globally asymptotically stable positive equilibrium under appropriate conditions which involve parameter estimations. As a result, the global asymptotic stability of the unique positive equilibrium is used to establish a procedure to maintain the pests at an acceptably low level in the long term. In the case in which an impulsive control is used, it is observed that there exists a globally asymptotically stable susceptible pest-eradication periodic solution on condition that the amount of infective pests released periodically is larger than some critical value. When the amount of infective pests released is less than this critical value, the system is shown to be permanent, which implies that the trivial susceptible pest-eradication solution loses its stability. Further, the existence of a nontrivial periodic solution is also studied by means of numerical simulation. Finally, the efficiency of continuous and impulsive control policies is compared.  相似文献   

9.
研究了具有经济阈值和人文控制策略的植物疾病模型.根据某一参数的三种情况分析了唯一的正的周期解的存在性,并利用定性理论给出了在该参数某种范围下周期解全局稳定的充分条件,同时得到在其它两种情况下周期解的不稳定性.文章所得结论推广了综合疾病管理中植物疾病模型的经典结论.  相似文献   

10.
In this paper, one investigates the dynamic behaviors of one-prey multi-predator model with Holling type II functional response by introducing impulsive biological control strategy (periodic releasing natural enemies at different fixed time). By using Floquet theorem and small amplitude perturbation method, it is proved that there exists an asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value and permanence condition is established via the method of comparison involving multiple Liapunov functions. It is shown that multi-predator impulsive control strategy is more effective than the classical and single one.  相似文献   

11.
讨论了食饵具有群体防卫和捕食者具有阶段结构的脉冲控制捕食系统,根据Floquet乘子理论和脉冲比较定理,获得了食饵(害虫)灭绝周期解局部稳定与系统持续生存的充分条件.利用Matlab软件对害虫灭绝周期解和害虫周期爆发现象进行了数值模拟,并揭示了诸如高倍周期振荡,混沌,吸引子突变等复杂的动力学现象.得出的结论为害虫治理提供了可靠的策略依据.  相似文献   

12.
In this paper, a chemostat model with Beddington-DeAnglis uptake function and impulsive state feedback control is considered. We obtain sufficient conditions of the global asymptotical stability of the system without impulsive state feedback control. We also obtain that the system with impulsive state feedback control has periodic solution of order one. Sufficient conditions for existence and stability of periodic solution of order one are given. In some cases, it is possible that the system exists periodic solution of order two. Our results show that the control measure is effective and reliable.  相似文献   

13.
基于害虫的生物控制和化学控制策略,考虑到化学杀虫剂对天敌的影响,利用脉冲微分方程建立了在不同的固定时刻分别喷洒杀虫剂和释放天敌的具有依氏(Ivlev)功能性反应的捕食者-食饵脉冲动力系统.证明了当脉冲周期小于某个临界值时,系统存在一个渐近稳定的害虫根除周期解,否则系统是持续生存的.通过分析表明如果采取有效的化学控制策略,那么这种综害虫合控制策略更有效.  相似文献   

14.
Impulsive control strategies in biological control of pesticide   总被引:10,自引:0,他引:10  
By presenting and analyzing the pest-predator model under insecticides used impulsively, two impulsive strategies in biological control are put forward. The first strategy: the pulse period is fixed, but the proportional constant E(1) changes, which represents the fraction of pests killed by applying insecticide. For this scheme, two thresholds, E(1)(**) and E(1)(*) for E(1) are obtained. If E(1)>or=E(1)(*), both the pest and predator (natural enemies) populations go to extinction. If E(1)(**)相似文献   

15.
这篇论文讨论了关于脉冲释放病虫与喷洒农药的害虫管理SI模型.我们不但证明了系统的所有解的一致完全有界,而且得到了害虫灭绝的边界周期解的全局渐进稳定的条件是In1/1-μ1>rT-rμθ(1-exp(-wT))/Kw(1-(1-μ2)exp(-WT)-βμ^3(1-exp(-3WT))/3w(1-μ2)exp(-WT))^3也得到了系统(1)的一致持久的条件我们的结论为实际的害虫管理提供了可靠的理论依据.  相似文献   

16.
Zhang H  Georgescu P  Chen L 《Bio Systems》2008,93(3):151-171
From a practical point of view, the most efficient strategy for pest control is to combine an array of techniques to control the wide variety of potential pests that may threaten crops in an approach known as integrated pest management (IPM). In this paper, we propose a predator-prey (pest) model of IPM in which pests are impulsively controlled by means of spraying pesticides (the chemical control) and releasing natural predators (the biological control). It is assumed that the biological and chemical control are used with the same periodicity, but not simultaneously. The functional response of the predator is allowed to be predator-dependent, in the form of a Beddington-DeAngelis functional response, rather than to have a perhaps more classical prey-only dependence. The local and global stability of the pest-eradication periodic solution, as well as the permanence of the system, are obtained under integral conditions which are shown to have biological significance. In a certain limiting case, it is shown that a nontrivial periodic solution emerges via a supercritical bifurcation. Finally, our findings are confirmed by means of numerical simulations.  相似文献   

17.
18.
In this paper, we develop a mathematical model concerning a chemostat with impulsive state feedback control to investigate the periodicity of bioprocess. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions under which the model has a periodic solution of order one are obtained. Furthermore, we estimate the position of the periodic solution of order one and discuss the existence of periodic solution of order two. The theoretical results and numerical simulations indicate that the chemostat system with impulsive state feedback control either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentrations of microorganisms and substrate.  相似文献   

19.
刘琼 《生物数学学报》2009,24(2):251-259
文章讨论一类捕食者(天敌)具脉冲放养与食饵(害虫)具阶段结构时滞的捕食-食饵模型,得到了害虫灭绝周期解全局吸引的充分条件和害虫的密度可以控制在经济危害水平E(EIL)之下的脉冲存放周期.为现实的害虫管理提供一定的理论依据.  相似文献   

20.
In this paper, we study the effects of Beddington-DeAngelis interference and squabbling, respectively, on the minimal rate of predator release required to drive a pest population to zero. A two-dimensional system of coupled ordinary differential equations is considered, augmented by an impulsive component depicting the periodic release of predators into the system. This periodic release takes place independently of the detection of the pests in the field. We establish the existence of a pest-free solution driven by the periodic releases, and express the global stability conditions for this solution in terms of the minimal predator rate required to bring an outbreak of pests to nil. In particular, we show that with the interference effects, the minimal rate will only guarantee eradication if the releases are carried out frequently enough. When Beddington-DeAngelis behaviour is considered, an additional constraint for the existence itself of a successful release rate is that the pest growth rate should be less than the predation pressure, the latter explicitly formulated in terms of the predation function and the interference parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号