首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antibody responses elicited in rhesus macaques immunized with soluble human immunodeficiency virus (HIV) Env gp140 proteins derived from the R5-tropic HIV-1 SF162 virus were analyzed and compared to the broadly reactive neutralizing antibody responses elicited during chronic infection of a macaque with a simian/human immunodeficiency virus (SHIV) expressing the HIV-1 SF162 Env, SHIV(SF162P4), and humans infected with heterologous HIV-1 isolates. Four gp140 immunogens were evaluated: SF162gp140, DeltaV2gp140 (lacking the crown of the V2 loop), DeltaV3gp140 (lacking the crown of the V3 loop), and DeltaV2DeltaV3gp140 (lacking both the V2 and V3 loop crowns). SF162gp140 and DeltaV2gp140 have been previously evaluated by our group in a pilot study, but here, a more comprehensive analysis of their immunogenic properties was performed. All four gp140 immunogens elicited stronger anti-gp120 than anti-gp41 antibodies and potent homologous neutralizing antibodies (NAbs) that primarily targeted the first hypervariable region (V1 loop) of gp120, although SF162gp140 also elicited anti-V3 NAbs. Heterologous NAbs were elicited by SF162gp140 and DeltaV2gp140 but were weak in potency and narrow in specificity. No heterologous NAbs were elicited by DeltaV3gp140 or DeltaV2DeltaV3gp140. In contrast, the SHIV(SF162P4)-infected macaque and HIV-infected humans generated similar titers of anti-gp120 and anti-gp41 antibodies and NAbs of significant breadth against primary HIV-1 isolates, which did not target the V1 loop. The difference in V1 loop immunogenicity between soluble gp140 and virion-associated gp160 Env proteins derived from SF162 may be the basis for the observed difference in the breadth of neutralization in sera from the immunized and infected animals studied here.  相似文献   

2.
Several different strains of simian-human immunodeficiency virus (SHIV) that contain the envelope glycoproteins of either T-cell-line-adapted (TCLA) strains or primary isolates of human immunodeficiency virus type 1 (HIV-1) are now available. One of the advantages of these chimeric viruses is their application to studies of HIV-1-specific neutralizing antibodies in preclinical AIDS vaccine studies in nonhuman primates. In this regard, an important consideration is the spectrum of antigenic properties exhibited by the different envelope glycoproteins used for SHIV construction. The antigenic properties of six SHIV variants were characterized here in neutralization assays with recombinant soluble CD4 (rsCD4), monoclonal antibodies, and serum samples from SHIV-infected macaques and HIV-1-infected individuals. Neutralization of SHIV variants HXBc2, KU2, 89.6, and 89.6P by autologous and heterologous sera from SHIV-infected macaques was restricted to an extent that these viruses may be considered heterologous to one another in their major neutralization determinants. Little or no variation was seen in the neutralization determinants on SHIV variants 89.6P, 89.6PD, and SHIV-KB9. Neutralization of SHIV HXBc2 by sera from HXBc2-infected macaques could be blocked with autologous V3-loop peptide; this was less true in the case of SHIV 89.6 and sera from SHIV 89.6-infected macaques. The poorly immunogenic but highly conserved epitope for monoclonal antibody IgG1b12 was a target for neutralization on SHIV variants HXBc2, KU2, and 89.6 but not on 89.6P and KB9. The 2G12 epitope was a target for neutralization on all five SHIV variants. SHIV variants KU2, 89.6, 89.6P, 89.6PD, and KB9 exhibited antigenic properties characteristic of primary isolates by being relatively insensitive to neutralization in peripheral blood mononuclear cells with serum samples from HIV-1-infected individuals and 12-fold to 38-fold less sensitive to inhibition with recombinant soluble CD4 than TCLA strains of HIV-1. The utility of nonhuman primate models in AIDS vaccine development is strengthened by the availability of SHIV variants that are heterologous in their neutralization determinants and exhibit antigenic properties shared with primary isolates.  相似文献   

3.
Although the correlates of vaccine-induced protection against human immunodeficiency virus type 1 (HIV-1) are not fully known, it is presumed that neutralizing antibodies (NAb) play a role in controlling virus infection. In this study, we examined immune responses elicited in rhesus macaques following vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guérin expressing an HIV-1 Env V3 antigen (rBCG Env V3). We also determined the effect of vaccination on protection against challenge with either a simian-human immunodeficiency virus (SHIV-MN) or a highly pathogenic SHIV strain (SHIV-89.6PD). Immunization with rBCG Env V3 elicited significant levels of NAb for the 24 weeks tested that were predominantly HIV-1 type specific. Sera from the immunized macaques neutralized primary HIV-1 isolates in vitro, including HIV-1BZ167/X4, HIV-1SF2/X4, HIV-1CI2/X4, and, to a lesser extent, HIV-1MNp/X4, all of which contain a V3 sequence homologous to that of rBCG Env V3. In contrast, neutralization was not observed against HIV-1SF33/X4, which has a heterologous V3 sequence, nor was it found against primary HIV-1 R5 isolates from either clade A or B. Furthermore, the viral load in the vaccinated macaques was significantly reduced following low-dose challenge with SHIV-MN, and early plasma viremia was markedly decreased after high-dose SHIV-MN challenge. In contrast, replication of pathogenic SHIV-89.6PD was not affected by vaccination in any of the macaques. Thus, we have shown that immunization with an rBCG Env V3 vaccine elicits a strong, type-specific V3 NAb response in rhesus macaques. While this response was not sufficient to provide protection against a pathogenic SHIV challenge, it was able to significantly reduce the viral load in macaques following challenge with a nonpathogenic SHIV. These observations suggest that rBCG vectors have the potential to deliver an appropriate virus immunogen for desirable immune elicitations.  相似文献   

4.
The anchored and secreted forms of the human immunodeficiency virus type 1 (HIV-1) 89.6 envelope glycoprotein, either complete or after deletion of the V3 loop, were expressed in a cloned attenuated measles virus (MV) vector. The recombinant viruses grew as efficiently as the parental virus and expressed high levels of the HIV protein. Expression was stable during serial passages. The immunogenicity of these recombinant vectors was tested in mice susceptible to MV and in macaques. High titers of antibodies to both MV and HIV-Env were obtained after a single injection in susceptible mice. These antibodies neutralized homologous SHIV89.6p virus, as well as several heterologous HIV-1 primary isolates. A gp160 mutant in which the V3 loop was deleted induced antibodies that neutralized heterologous viruses more efficiently than antibodies induced by the native envelope protein. A high level of CD8+ and CD4+ cells specific for HIV gp120 was also detected in MV-susceptible mice. Furthermore, recombinant MV was able to raise immune responses against HIV in mice and macaques with a preexisting anti-MV immunity. Therefore, recombinant MV vaccines inducing anti-HIV neutralizing antibodies and specific T lymphocytes responses deserve to be tested as a candidate AIDS vaccine.  相似文献   

5.
Simian immunodeficiency virus (SIV) infection of rhesus macaques has become an important surrogate model for evaluating HIV vaccine strategies. The extreme resistance to neutralizing antibody (NAb) of many commonly used strains, such as SIVmac251/239 and SIVsmE543-3, limits their potential relevance for evaluating the role of NAb in vaccine protection. In contrast, SIVsmE660 is an uncloned virus that appears to be more sensitive to neutralizing antibody. To evaluate the role of NAb in this model, we generated full-length neutralization-sensitive molecular clones of SIVsmE660 and evaluated two of these by intravenous inoculation of rhesus macaques. All animals became infected and maintained persistent viremia that was accompanied by a decline in memory CD4(+) T cells in blood and bronchoalveolar lavage fluid. High titers of autologous NAb developed by 4 weeks postinoculation but were not associated with control of viremia, and neutralization escape variants were detected concurrently with the generation of NAb. Neutralization escape was associated with substitutions and insertion/deletion polymorphisms in the V1 and V4 domains of envelope. Analysis of representative variants revealed that escape variants also induced NAbs within a few weeks of their appearance in plasma, in a pattern that is reminiscent of the escape of human immunodeficiency virus type 1 (HIV-1) isolates in humans. Although early variants maintained a neutralization-sensitive phenotype, viruses obtained later in infection were significantly less sensitive to neutralization than the parental viruses. These results indicate that NAbs exert selective pressure that drives the evolution of the SIV envelope and that this model will be useful for evaluating the role of NAb in vaccine-mediated protection.  相似文献   

6.
We evaluated four priming-boosting vaccine regimens for the highly pathogenic simian human immunodeficiency virus SHIV89.6P in Macaca nemestrina. Each regimen included gene gun delivery of a DNA vaccine expressing all SHIV89.6 genes plus Env gp160 of SHIV89.6P. Additional components were two recombinant vaccinia viruses, expressing SHIV89.6 Gag-Pol or Env gp160, and inactivated SHIV89.6 virus. We compared (i) DNA priming/DNA boosting, (ii) DNA priming/inactivated virus boosting, (iii) DNA priming/vaccinia virus boosting, and (iv) vaccinia virus priming/DNA boosting versus sham vaccines in groups of 6 macaques. Prechallenge antibody responses to Env and Gag were strongest in the groups that received vaccinia virus priming or boosting. Cellular immunity to SHIV89.6 peptides was measured by enzyme-linked immunospot assay; strong responses to Gag and Env were found in 9 of 12 vaccinia virus vaccinees and 1 of 6 DNA-primed/inactivated-virus-boosted animals. Vaccinated macaques were challenged intrarectally with 50 50% animal infectious doses of SHIV89.6P 3 weeks after the last immunization. All animals became infected. Five of six DNA-vaccinated and 5 of 6 DNA-primed/particle-boosted animals, as well as all 6 controls, experienced severe CD4(+)-T-cell loss in the first 3 weeks after infection. In contrast, DNA priming/vaccinia virus boosting and vaccinia virus priming/DNA boosting vaccines both protected animals from disease: 11 of 12 macaques had no loss of CD4(+) T cells or moderate declines. Virus loads in plasma at the set point were significantly lower in vaccinia virus-primed/DNA-boosted animals versus controls (P = 0.03). We conclude that multigene vaccines delivered by a combination of vaccinia virus and gene gun-delivered DNA were effective against SHIV89.6P viral challenge in M. nemestrina.  相似文献   

7.
The magnitude and breadth of neutralizing antibodies raised in response to infection with chimeric simian-human immunodeficiency virus (SHIV) in rhesus macaques were evaluated. Infection with either SHIV-HXB2, SHIV-89.6, or SHIV-89.6PD raised high-titer neutralizing antibodies to the homologous SHIV (SHIV-89.6P in the case of SHIV-89.6PD-infected animals) and significant titers of neutralizing antibodies to human immunodeficiency virus type 1 (HIV-1) strains MN and SF-2. With few exceptions, however, titers of neutralizing antibodies to heterologous SHIV were low or undetectable. The antibodies occasionally neutralized heterologous primary isolates of HIV-1; these antibodies required >40 weeks of infection to reach detectable levels. Notable was the potent neutralization of the HIV-1 89.6 primary isolate by serum samples from SHIV-89.6-infected macaques. These results demonstrate that SHIV-HXB2, SHIV-89.6, and SHIV-89.6P possess highly divergent, strain-specific neutralization epitopes. The results also provide insights into the requirements for raising neutralizing antibodies to primary isolates of HIV-1.  相似文献   

8.
We previously demonstrated the excellent protective efficacy of DNA priming followed by Gag-expressing Sendai virus (SeV) boosting (DNA prime/SeV-Gag boost vaccine) against a pathogenic simian-human immunodeficiency virus (SHIV89.6PD) infection in macaques. Here we show that we established a practical, safer AIDS vaccine protocol, a single DNA priming followed by a single booster with a recently developed replication-defective F deletion SeV-expressing Gag, and show its protective efficacy against SHIV89.6PD infections.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by targeting BST-2/tetherin, a cellular protein inhibiting virus release. The widely used HIV-1(NL4-3) Vpu functionally inactivates human BST-2 but not murine or monkey BST-2, leading to the notion that Vpu antagonism is species specific. Here we investigated the properties of the CXCR4-tropic simian-human immunodeficiency virus DH12 (SHIV(DH12)) and the CCR5-tropic SHIV(AD8), each of which carries vpu genes derived from different primary HIV-1 isolates. We found that virion release from infected rhesus peripheral blood mononuclear cells was enhanced to various degrees by the Vpu present in both SHIVs. Transfer of the SHIV(DH12) Vpu transmembrane domain to the HIV-1(NL4-3) Vpu conferred antagonizing activity against macaque BST-2. Inactivation of the SHIV(DH12) and SHIV(AD8) vpu genes impaired virus replication in 6 of 8 inoculated rhesus macaques, resulting in lower plasma viral RNA loads, slower losses of CD4(+) T cells, and delayed disease progression. The expanded host range of the SHIV(DH12) Vpu was not due to adaptation during passage in macaques but was an intrinsic property of the parental HIV-1(DH12) Vpu protein. These results demonstrate that the species-specific inhibition of BST-2 by HIV-1(NL4-3) Vpu is not characteristic of all HIV-1 Vpu proteins; some HIV-1 isolates encode a Vpu with a broader host range.  相似文献   

10.
Plasma samples from individuals infected with human immunodeficiency virus type 1 (HIV-1) are known to be highly strain specific in their ability to neutralize HIV-1 infectivity. Such plasma samples exhibit significant neutralizing activity against autologous HIV-1 isolates but typically exhibit little or no activity against heterologous strains, although some cross-neutralizing activity can develop late in infection. Monkeys infected with the simian-human immunodeficiency virus (SHIV) clone DH12 generated antibodies that neutralized SHIV DH12, but not SHIV KB9. Conversely, antibodies from monkeys infected with the SHIV clone KB9 neutralized SHIV KB9, but not SHIV DH12. To investigate the role of the variable loops of the HIV-1 envelope glycoprotein gp120 in determining this strain specificity, variable loops 1 and 2 (V1/V2), V3, or V4 were exchanged individually or in combination between SHIV DH12 and SHIV KB9. Despite the fact that both parental viruses exhibited significant infectivity and good replication in the cell lines examined, 3 of the 10 variable-loop chimeras exhibited such poor infectivity that they could not be used further for neutralization assays. These results indicate that a variable loop that is functional in the context of one particular envelope background will not necessarily function within another. The remaining seven replication-competent chimeras allowed unambiguous assignment of the sequences principally responsible for the strain specificity of the neutralizing activity present in SHIV-positive plasma. Exchange of the V1/V2 loop sequences conferred a dominant loss of sensitivity to neutralization by autologous plasma and a gain of sensitivity to neutralization by heterologous plasma. Substitution of V3 or V4 had little or no effect on the sensitivity to neutralization. These data demonstrate that the V1/V2 region of HIV-1 gp120 is principally responsible for the strain specificity of the neutralizing antibody response in monkeys infected with these prototypic SHIVs.  相似文献   

11.
Newborn macaques were vaccinated against a chimeric simian human immunodeficiency (SHIV) virus, SHIV-vpu+, by DNA priming and boosting with homologous HIV-1 gp160. Following SHIV-vpu+ challenge, containment of infection was observed in 4 of 15 animals given DNA priming/protein boost vaccination and in three of four animals given gp160 boosts only. Rechallenge with homologous virus of six animals that contained the first challenge virus resulted in rapid viral clearance or low viral loads. Upon additional rechallenge with heterologous, pathogenic SHIV89.6P, four of these six animals maintained normal CD4+ T-cell counts with no or limited SHIV89.6P infection. Our data suggest that humoral and cellular immune mechanisms may have contributed to the containment of SHIV89.6P; however, viral interference with SHIV-vpu+ could also have played a role. Our results indicate that immunogenicity and efficacy of candidate AIDS vaccines are not affected when vaccination is initiated during infancy as compared with later in life.  相似文献   

12.
T-cell-mediated immune effector mechanisms play an important role in the containment of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) replication after infection. Both vaccination- and infection-induced T-cell responses are dependent on the host major histocompatibility complex classes I and II (MHC-I and MHC-II) antigens. Here we report that both inherent, host-dependent immune responses to SIVmac251 infection and vaccination-induced immune responses to viral antigens were able to reduce virus replication and/or CD4+ T-cell loss. Both the presence of the MHC-I Mamu-A*01 genotype and vaccination of rhesus macaques with ALVAC-SIV-gag-pol-env (ALVAC-SIV-gpe) contributed to the restriction of SIVmac251 replication during primary infection, preservation of CD4+ T cells, and delayed disease progression following intrarectal challenge exposure of the animals to SIV(mac251 (561)). ALVAC-SIV-gpe immunization induced cytotoxic T-lymphocyte (CTL) responses cumulatively in 67% of the immunized animals. Following viral challenge, a significant secondary virus-specific CD8+ T-cell response was observed in the vaccinated macaques. In the same immunized macaques, a decrease in virus load during primary infection (P = 0.0078) and protection from CD4 loss during both acute and chronic phases of infection (P = 0.0099 and P = 0.03, respectively) were observed. A trend for enhanced survival of the vaccinated macaques was also observed. Neither boosting the ALVAC-SIV-gpe with gp120 immunizations nor administering the vaccine by the combination of mucosal and systemic immunization routes increased significantly the protective effect of the ALVAC-SIV-gpe vaccine. While assessing the role of MHC-I Mamu-A*01 alone in the restriction of viremia following challenge of nonvaccinated animals with other SIV isolates, we observed that the virus load was not significantly lower in Mamu-A*01-positive macaques following intravenous challenge with either SIV(mac251 (561)) or SIV(SME660). However, a significant delay in CD4+ T-cell loss was observed in Mamu-A*01-positive macaques in each group. Of interest, in the case of intravenous or intrarectal challenge with the chimeric SIV/HIV strains SHIV(89.6P) or SHIV(KU2), respectively, MHC-I Mamu-A*01-positive macaques did not significantly restrict primary viremia. The finding of the protective effect of the Mamu-A*01 molecule parallels the protective effect of the B*5701 HLA allele in HIV-1-infected humans and needs to be accounted for in the evaluation of vaccine efficacy against SIV challenge models.  相似文献   

13.
We analyzed the ability of a vaccine vector based on vesicular stomatitis virus (VSV) to induce a neutralizing antibody (NAb) response to avian influenza viruses (AIVs) in rhesus macaques. Animals vaccinated with vectors expressing either strain A/Hong Kong/156/1997 or strain A/Vietnam/1203/2004 H5 hemagglutinin (HA) were able to generate robust NAb responses. The ability of the vectors to induce NAbs against homologous and heterologous AIVs after a single dose was dependent upon the HA antigen incorporated into the VSV vaccine. The vectors expressing strain A/Vietnam/1203/2004 H5 HA were superior to those expressing strain A/Hong Kong/156/1997 HA at inducing cross-clade NAbs.  相似文献   

14.
Whereas several recent AIDS vaccine strategies have protected rhesus macaques against a pathogenic simian/human immunodeficiency virus (SHIV)(89.6P) challenge, similar approaches have provided only modest, transient reductions in viral burden after challenge with virulent, pathogenic SIV, which is more representative of HIV infection of people. We show here that priming with replicating adenovirus recombinants encoding SIV env/rev, gag, and/or nef genes, followed by boosting with SIV gp120 or an SIV polypeptide mimicking the CD4 binding region of the envelope, protects rhesus macaques from intrarectal infection with the highly pathogenic SIV(mac251). Using trend analysis, significant reductions in acute-phase and set point viremia were correlated with anti-gp120 antibody and cellular immune responses, respectively. Within immunization groups exhibiting significant protection, a subset (39%) of macaques have exhibited either no viremia, cleared viremia, or controlled viremia at the threshold of detection, now more than 40 weeks postchallenge. This combination prime-boost strategy, utilizing replication competent adenovirus, is a promising alternative for HIV vaccine development.  相似文献   

15.
Current strategies in human immunodeficiency virus type 1 (HIV-1) vaccine development are often based on the production of different vaccine antigens according to particular genetic clades of HIV-1 variants. To determine if virus virulence or genetic distance had a greater impact on HIV-1 vaccine efficacy, we designed a series of heterologous chimeric simian/human immunodeficiency virus (SHIV) challenge experiments in HIV-1 subunit-vaccinated rhesus macaques. Of a total of 22 animals, 10 nonimmunized animals served as controls; the remainder were vaccinated with the CCR5 binding envelope of HIV-1(W6.1D). In the first study, heterologous challenge included two nonpathogenic SHIV chimeras encoding the envelopes of the divergent clade B HIV-1(han2) and HIV-1(sf13) strains. In the second study, all immunized animals were rechallenged with SHIV(89. 6p), a virus closely related to the vaccine strain but highly virulent. Protection from either of the divergent SHIV(sf13) or SHIV(han2) challenges was demonstrated in the majority of the vaccinated animals. In contrast, upon challenge with the more related but virulent SHIV(89.6p), protection was achieved in only one of the previously protected vaccinees. A secondary but beneficial effect of immunization on virus load and CD4(+) T-cell counts was observed despite failure to protect from infection. In addition to revealing different levels of protective immunity, these results suggest the importance of developing vaccine strategies capable of protecting from particularly virulent variants of HIV-1.  相似文献   

16.
In vivo passage of a simian-human immunodeficiency virus (SHIV-89.6) generated a virus, SHIV-89.6P, that exhibited increased resistance to some neutralizing antibodies (G. B. Karlsson et al., J. Exp. Med. 188:1159-1171, 1998). Here we examine the range of human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies to which the passaged virus became resistant and identify envelope glycoprotein determinants of antibody resistance. Compared with the envelope glycoproteins derived from the parental SHIV-89.6, the envelope glycoproteins of the passaged virus were resistant to antibodies directed against the gp120 V3 variable loop and the CD4 binding site. By contrast, both viral envelope glycoproteins were equally sensitive to neutralization by two antibodies, 2G12 and 2F5, that recognize poorly immunogenic structures on gp120 and gp41, respectively. Changes in the V2 and V3 variable loops of gp120 were necessary and sufficient for full resistance to the IgG1b12 antibody, which is directed against the CD4 binding site. Changes in the V3 loop specified complete resistance to a V3 loop-directed antibody, while changes in the V1/V2 loops conferred partial resistance to this antibody. The epitopes of the neutralizing antibodies were not disrupted by the resistance-associated changes. These results indicate that in vivo selection occurs for HIV-1 envelope glycoproteins with variable loop conformations that restrict the access of antibodies to immunogenic neutralization epitopes.  相似文献   

17.
Immunization of macaques with multivalent DNA encoding gp120 genes from HIV-1 subtypes A, B, C and E and a gag gene followed by boosting with homologous gp120 proteins elicited strong anti-gp120 antibodies capable of neutralizing homologous and to a lesser degree heterologous HIV-1 isolates. Both Env- and Gag-specific cell mediated immune (CMI) responses were detected in the immunized animals. Following rectal challenge with an SHIV isolate encoding HIV-1(Ba-L)env, plasma viremia in the infected immunized animals was significantly lower than that observed in the na?ve animals. Further, one of six immunized animals was completely protected whereas all six na?ve animals were infected. These results demonstrate that a vaccine based on priming with a polyvalent DNA vaccine from multiple HIV-1 subtypes followed by boosting with homologous Env proteins elicits anti-HIV-1 immune responses capable of controlling rectal transmission of SHIV(Ba-L).  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) isolates from India mainly belong to clade C and are quite distinct from clade C isolates from Africa in terms of their phylogenetic makeup, serotype, and sensitivity to known human broadly neutralizing monoclonal antibodies. Because many of these properties are associated with the envelope proteins of HIV-1, it is of interest to study the envelope proteins of Indian clade C isolates as part of the ongoing efforts to develop a vaccine against HIV-1. To this end, we purified trimeric uncleaved gp145 of a CCR5 tropic Indian clade C HIV-1 (93IN101) from the conditioned medium of 293 cells. The purified protein was shown to be properly folded with stable structure by circular dichroism. Conformational integrity was further demonstrated by its high affinity binding to soluble CD4, CD4 binding site antibodies such as b12 and VRC01, quaternary epitope-specific antibody PG9, and CD4-induced epitope-specific antibody 17b. Sera from rabbits immunized with gp145 elicited high titer antibodies to various domains of gp120 and neutralized a broad spectrum of clade B and clade C HIV-1 isolates. Similar to other clade B and clade C envelope immunogens, most of the Tier 1 neutralizing activity could be absorbed with the V3-specific peptide. Subsequent boosting of these rabbits with a clade B HIV-1 Bal gp145 resulted in an expanded breadth of neutralization of HIV-1 isolates. The present study strongly supports the inclusion of envelopes from Indian isolates in a future mixture of HIV-1 vaccines.  相似文献   

19.
The development of an effective human immunodeficiency virus (HIV-1) vaccine is a high global health priority. Soluble native-like HIV-1 envelope glycoprotein trimers (Env), including those based on the SOSIP design, have shown promise as vaccine candidates by inducing neutralizing antibody responses against the autologous virus in animal models. However, to overcome HIV-1’s extreme diversity a vaccine needs to induce broadly neutralizing antibodies (bNAbs). Such bNAbs can protect non-human primates (NHPs) and humans from infection. The prototypic BG505 SOSIP.664 immunogen is based on the BG505 env sequence isolated from an HIV-1-infected infant from Kenya who developed a bNAb response. Studying bNAb development during natural HIV-1 infection can inform vaccine design, however, it is unclear to what extent vaccine-induced antibody responses to Env are comparable to those induced by natural infection. Here, we compared Env antibody responses in BG505 SOSIP-immunized NHPs with those in BG505 SHIV-infected NHPs, by analyzing monoclonal antibodies (mAbs). We observed three major differences between BG505 SOSIP immunization and BG505 SHIV infection. First, SHIV infection resulted in more clonal expansion and less antibody diversity compared to SOSIP immunization, likely because of higher and/or prolonged antigenic stimulation and increased antigen diversity during infection. Second, while we retrieved comparatively fewer neutralizing mAbs (NAbs) from SOSIP-immunized animals, these NAbs targeted more diverse epitopes compared to NAbs from SHIV-infected animals. However, none of the NAbs, either elicited by vaccination or infection, showed any breadth. Finally, SOSIP immunization elicited antibodies against the base of the trimer, while infection did not, consistent with the base being placed onto the virus membrane in the latter setting. Together these data provide new insights into the antibody response against BG505 Env during infection and immunization and limitations that need to be overcome to induce better responses after vaccination.  相似文献   

20.
We previously demonstrated that replication-competent adenovirus (Ad)-simian immunodeficiency virus (SIV) recombinant prime/protein boost regimens elicit potent immunogenicity and strong, durable protection of rhesus macaques against SIV(mac251). Additionally, native Tat vaccines have conferred strong protection against simian/human immunodeficiency virus SHIV(89.6P) challenge of cynomolgus monkeys, while native, inactivated, or vectored Tat vaccines have failed to elicit similar protective efficacy in rhesus macaques. Here we asked if priming rhesus macaques with replicating Ad-human immunodeficiency virus (HIV) tat and boosting with the Tat protein would elicit protection against SHIV(89.6P). We also evaluated a Tat/Env regimen, adding an Ad-HIV env recombinant and envelope protein boost to test whether envelope antibodies would augment acute-phase protection. Further, expecting cellular immunity to enhance chronic viremia control, we tested a multigenic group: Ad-HIV tat, -HIV env, -SIV gag, and -SIV nef recombinants and Tat, Env, and Nef proteins. All regimens were immunogenic. A hierarchy was observed in enzyme-linked immunospot responses (with the strongest response for Env, followed by Gag, followed by Nef, followed by Tat) and antibody titers (with the highest titer for Env, followed by Tat, followed by Nef, followed by Gag). Following intravenous SHIV(89.6P) challenge, all macaques became infected. Compared to controls, no protection was seen in the Tat-only group, confirming previous reports for rhesus macaques. However, the multigenic group blunted acute viremia by approximately 1 log (P = 0.017), and both the multigenic and Tat/Env groups reduced chronic viremia by 3 and 4 logs, respectively, compared to controls (multigenic, P = 0.0003; Tat/Env, P < 0.0001). The strikingly greater reduction in the Tat/Env group than in the multigenic group (P = 0.014) was correlated with Tat and Env binding antibodies. Since prechallenge anti-Env antibodies lacked SHIV(89.6P)-neutralizing activity, other functional anti-Env and anti-Tat activities are under investigation, as is a possible synergy between the Tat and Env immunogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号