首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Functional retroviral integrase protein is thought to be essential for productive viral replication. Yet, previous studies differed on the extent to which integrase mutant viruses expressed human immunodeficiency virus type 1 (HIV-1) genes from unintegrated DNA. Although one reason for this difference was that class II integrase mutations pleiotropically affected the viral life cycle, another reason apparently depended on the identity of the infected cell. Here, we analyzed integrase mutant viral infectivities in a variety of cell types. Single-round infectivity of class I integration-specific mutant HIV-1 ranged from <0.03 to 0.3% of that of the wild type (WT) across four different T-cell lines. Based on this approximately 10-fold influence of cell type on mutant gene expression, we examined class I and class II mutant replication kinetics in seven different cell lines and two primary cell types. Unexpectedly, some cell lines supported productive class I mutant viral replication under conditions that restricted class II mutant growth. Cells were defined as permissive, semipermissive, or nonpermissive based on their ability to support the continual passage of class I integration-defective HIV-1. Mutant infectivity in semipermissive and permissive cells as quantified by 50% tissue culture infectious doses, however, was only 0.0006 to 0.005% of that of WT. Since the frequencies of mutant DNA recombination in these lines ranged from 0.023 to <0.093% of the WT, we conclude that productive replication in the absence of integrase function most likely required the illegitimate integration of HIV-1 into host chromosomes by cellular DNA recombination enzymes.  相似文献   

4.
猪皮肤成纤维细胞PERV体外和体内感染性的研究   总被引:1,自引:0,他引:1  
为了解猪皮肤成纤维细胞PERV在体外和体内的感染性,通过建立猪皮肤成纤维细胞系,将所建细胞系与人胚胎肾293细胞体外共培养,并移植于严重联合免疫缺陷鼠(SCID鼠)皮下进行猪皮肤成纤维细胞PERV的体外和体内感染性实验。结果表明,猪皮肤成纤维细胞与人胚胎肾细胞共培养过程中,猪内源性逆转录病毒感染人胚胎肾细胞,进一步证实和拓宽了猪细胞PERV感染人细胞的范畴;猪皮肤成纤维细胞移植SCID鼠皮下后,导致SCID鼠发生猪细胞微嵌合(78.57%)和PERV在体内感染(85.71%)并且波及远离移植部位的多种组织或器官,但是并未检测出SCID鼠组织中表达PERV env RNA。这就证实了猪皮肤成纤维细胞PERV的体外感染性和在小鼠体内的感染性,但未能找到PERV在体内活跃复制的明显证据。因而,在猪异种移植过程中PERV传播的潜在危险仍然是必须高度重视的生物安全性问题。  相似文献   

5.
6.
The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity approximately 10- to approximately 40-fold.  相似文献   

7.
Porcine endogenous retrovirus (PERV), porcine cytomegalovirus (PCMV), and porcine lymphotropic herpesvirus (PLHV) are common porcine viruses that may be activated with immunosuppression for xenotransplantation. Studies of viral replication or transmission are possible due to prolonged survival of xenografts in baboon recipients from human decay-accelerating factor transgenic or alpha-1,3-galactosyltransferase gene knockout miniature swine. Ten baboons underwent xenotransplantation with transgenic pig organs. Graft survival was 32 to 179 days. Recipient serial samples of peripheral blood mononuclear cells (PBMC) and plasma were analyzed for PCMV, PERV, and PLHV-1 nucleic acids and viral replication using quantitative PCR assays. The PBMC contained PERV proviral DNA in 10 animals, PLHV-1 DNA in 6, and PCMV in 2. PERV RNA was not detected in any PBMC or serum samples. Plasma PLHV-1 DNA was detected in one animal. Pig cell microchimerism (pig major histocompatibility complex class I and pig mitochondrial cytochrome c oxidase subunit II sequences) was present in all recipients with detectable PERV or PLHV-1 (85.5%). Productive infection of PERV or PLHV-1 could not be demonstrated. The PLHV-1 viral load did not increase in serum over time, despite prolonged graft survival and pig cell microchimerism. There was no association of viral loads with the nature of exogenous immune suppression. In conclusion, PERV provirus and PLHV-1 DNA were detected in baboons following porcine xenotransplantation. Viral detection appeared to be due to persistent pig cell microchimerism. There was no evidence of productive infection in recipient baboons for up to 6 months of xenograft function.  相似文献   

8.
9.
The permissivity of CD4+ transformed T cells for the replication of human immunodeficiency virus type 1 (HIV-1) vif mutants varies widely between different cell lines. Mutant vif-negative viruses propagate normally in permissive CD4+ cell lines but are unable to establish a productive infection in restrictive cell lines such as H9. As a consequence, elucidation of the function of Vif has been considerably hampered by the inherent difficulty in obtaining a stable source of authentically replication-defective vif-negative viral particles produced by restrictive cells. vif-negative, vpr-negative HIV-1 strain NDK stock, produced by the permissive SupT1 cell line, was used to infect restrictive H9 cells. By using a high multiplicity, infection of H9 cells was achieved, leading to persistent production of viral particles displaying a dramatically reduced infectious virus titer when measured in a single-cycle infectivity assay. Although these viral particles were unable to further propagate in H9 cells, they could replicate normally in CEM and SupT1 cells. Comparison of unprocessed and processed Gag proteins in the persistently produced vif-negative viral particles revealed no defect in the processing of polypeptide precursors, with no inversion of the Pr55gag/p24 ratio. In addition, there was no defect in Env incorporation for the vif-negative viral particles. Despite their apparently normal protein content, these particles were morphologically abnormal when examined by transmission electron microscopy, displaying a previously described abnormally condensed nucleoid. Chronically infected restrictive cell lines producing stable levels of phenotypically vif-negative HIV-1 particles could prove particularly useful in further studies on the function of Vif in the virus life cycle.  相似文献   

10.
Myxoma virus is a rabbit-specific poxvirus pathogen that also exhibits a unique tropism for human tumor cells and is dramatically oncolytic for human cancer xenografts. Most tumor cell lines tested are permissive for myxoma infection in a fashion intimately tied to the activation state of Akt kinase. A host range factor of myxoma virus, M-T5, directly interacts with Akt and mediates myxoma virus tumor cell tropism. mTOR is a regulator of cell growth and metabolism downstream of Akt and is specifically inhibited by rapamycin. We report that treatment of nonpermissive human tumor cell lines, which normally restrict myxoma virus replication, with rapamycin dramatically increased virus tropism and spread in vitro. This increased myxoma replication is concomitant with global effects on mTOR signaling, specifically, an increase in Akt kinase. In contrast to the effects on human cancer cells, rapamycin does not increase myxoma virus replication in rabbit cell lines or permissive human tumor cell lines with constitutively active Akt. This indicates that rapamycin increases the oncolytic capacity of myxoma virus for human cancer cells by reconfiguring the internal cell signaling environment to one that is optimal for productive virus replication and suggests the possibility of a potentially therapeutic synergism between kinase signaling inhibitors and oncolytic poxviruses for cancer treatment.  相似文献   

11.
Infectious recombinant viruses were constructed from three molecularly cloned human immunodeficiency virus (HIV) strains varying in cell tropism. All recombinants showed a high infectivity titer on phytohemagglutinin-stimulated normal T lymphocytes. However, a 120-bp region of the envelope gene including the area of the V3 hypervariable loop was found to influence infectivity titer on both clone 1022 CD4-positive HeLa cells and CD4-positive CEM leukemia cells. Infectivity for macrophages was more complex. All viruses replicated in macrophages to a low level, but viral sequences both inside and outside the V3 loop region influenced the efficiency of replication. Two experiments showed that the mechanism of restriction of infection of 1022 cells by HIV strain JR-CSF was related to lack of virus entry. First, productive virus infection occurred after transfection of 1022 cells with viral plasmid DNA. Second, the nonpermissive HIV strain JR-CSF could infect 1022 cells when pseudotyped with the envelope of other retroviruses, including human T-cell leukemia virus type I (HTLV-I), HTLV-II, and amphotropic murine leukemia virus. These results demonstrate the possibility that unexpected cell types might be infected with HIV in human patients coinfected with HIV and HTLV-I or HTLV-II.  相似文献   

12.
Cell-to-cell viral transfer facilitates the spread of lymphotropic retroviruses such as human immunodeficiency virus (HIV) and human T-cell leukemia virus (HTLV), likely through the formation of "virological synapses" between donor and target cells. Regarding HIV replication, the importance of cell contacts has been demonstrated, but this phenomenon remains only partly characterized. In order to alter cell-to-cell HIV transmission, we have maintained cultures under continuous gentle shaking and followed viral replication in this experimental system. In lymphoid cell lines, as well as in primary lymphocytes, viral replication was dramatically reduced in shaken cultures. To document this phenomenon, we have developed an assay to assess the relative contributions of free and cell-associated virions in HIV propagation. Acutely infected donor cells were mixed with carboxyfluorescein diacetate succinimidyl ester-labeled lymphocytes as targets, and viral production was followed by measuring HIV Gag expression at different time points by flow cytometry. We report that cellular contacts drastically enhance productive viral transfer compared to what is seen with infection with free virus. Productive cell-to-cell viral transmission required fusogenic viral envelope glycoproteins on donor cells and adequate receptors on targets. Only a few syncytia were observed in this coculture system. Virus release from donor cells was unaffected when cultures were gently shaken, whereas virus transfer to recipient cells was severely impaired. Altogether, these results indicate that cell-to-cell transfer is the predominant mode of HIV spread and help to explain why this virus replicates so efficiently in lymphoid organs.  相似文献   

13.
Oncolytic adenoviruses have emerged as a promising approach for the treatment of tumors resistant to other treatment modalities. However, preclinical safety studies are hampered by the lack of a permissive nonhuman host. Screening of a panel of primary cell cultures from seven different animal species revealed that porcine cells support productive replication of human adenovirus type 5 (Ad5) nearly as efficiently as human A549 cells, while release of infectious virus by cells from other animal species tested was diminished by several orders of magnitude. Restriction of productive Ad5 replication in rodent and rabbit cells seems to act primarily at a postentry step. Replication efficiency of adenoviral vectors harboring different E1 deletions or mutations in porcine cells was similar to that in A549 cells. Side-by-side comparison of the viral load kinetics in blood of swine and mice injected with Ad5 or a replication-deficient adenoviral vector failed to provide clear evidence for virus replication in mice. In contrast, evidence suggests that adenovirus replication occurs in swine, since adenoviral late gene expression produced a 13.5-fold increase in viral load in an individual swine from day 3 to day 7 and 100-fold increase in viral DNA levels in the Ad5-infected swine compared to the animal receiving a replication-deficient adenovirus. Lung histology of Ad5-infected swine revealed a severe interstitial pneumonia. Although the results in swine are based on a small number of animals and need to be confirmed, our data strongly suggest that infection of swine with human adenovirus or oncolytic adenoviral vectors is a more appropriate animal model to study adenoviral pathogenicity or pharmacodynamic and toxicity profiles of adenoviral vectors than infection of mice.  相似文献   

14.
Hepatitis B virus (HBV) and woolly monkey hepatitis B virus (WMHBV) have natural host ranges that are limited to closely related species. The barrier for infection of primates seems to be at the adsorption and/or entry steps of the viral replication cycle, since a human hepatoma cell line is permissive for HBV and WMHBV replication following transfection of cloned DNA. We hypothesized that the HBV and WMHBV envelope proteins contain the principal viral determinants of host range. As previously shown by using the hepatitis D virus (HDV) system, recombinant HBV-HDV particles were infectious in chimpanzee as well as human hepatocytes. We extended the HDV system to include HDV particles pseudotyped with the WMHBV envelope. In agreement with the natural host ranges of HBV and WMHBV, in vitro infections demonstrated that HBV-HDV and WM-HDV particles preferentially infected human and spider monkey cells, respectively. Previous studies have implicated the pre-S1 region of the large (L) envelope protein in receptor binding and host range; therefore, recombinant HDV particles were pseudotyped with the hepadnaviral envelopes containing chimeric L proteins with the first 40 amino acids from the pre-S1 domain exchanged between HBV and WMHBV. Surprisingly, addition of the human amino terminus to the WMHBV L protein increased infectivity on spider monkey hepatocytes but did not increase infectivity for human hepatocytes. Based upon these data, we discuss the possibility that the L protein may be comprised of two domains that affect infectivity and that sequences downstream of residue 40 may influence host range and receptor binding or entry.  相似文献   

15.
It is well known that the characteristics of cell lines possibly alter when cell lines are at high-passage number because of the environmental selection. We do not know whether non-permissive or low-permissive cell lines could become permissive or more permissive to virus infection after over-high passage. In the present studies, the alteration of the permissiveness of Spodoptera litura cell line Sl-zsu-1 to three baculovirus infection was investigated after over-high passage, and the possible mechanisms are also investigated. Vigorous apoptosis in Sl-zsu-1 cells was induced by both the recombinant Autographa californica multiple nucleopolyhedrovirus AcMNPV-GFP-actin and the celery looper Anagrapha falcifera multiple nucleopolyhedrovirus AfMNPV, suggesting the replication of the two viruses was blocked by apoptosis. However, the cells infected by S. litura multicapsid nucleopolyhedrovirus SpltMNPV did not undergo apoptosis, but the SpltMNPV titre of the supernatant was not detectable, suggesting this cell line was low-permissive for this virus infection and other factor(s) involved in blockage of the virus replication except apoptosis. However, when Sl-zsu-1 cells had been subcultured continuously for more than 4 years (high-passage cell), which was named as Sl-HP cell line afterwards, no significant apoptosis was induced by the three baculovirus in Sl-HP cells, and many replicated virions or nucleocapsids were observed in the cells. But the permissiveness of Sl-HP cells to the three viruses was very different according to the titre of viruses in the cell cultures. Interestingly, the DNA extracted from SpltMNPV could induce vigorous apoptosis of Sl-HP cells. Altogether, Sl-zsu-1 cell line becomes more permissive to baculovirus infection after over-high passage and multiple paths can block the baculovirus infectivity.  相似文献   

16.
Identification of determinants of human tropism of porcine endogenous retrovirus (PERV) is critical to understanding the risk of transmission of PERV to recipients of porcine xenotransplantation products. Previously, we showed that a chimeric envelope cDNA encoding the 360 N-terminal residues of the human-tropic PERV envelope class A (PERV-A) SU and the 130 C-terminal residues of the pig-tropic PERV-C SU and all of TM (PERV-A/C) showed a 100-fold decrease in infectivity titer on human cells (M. Gemeniano, O. Mpanju, D. R. Salomon, M. V. Eiden, and C. A. Wilson, Virology 346:108-117, 2006). To identify residues important for human cell infection, we performed site-directed mutagenesis on each of the nine residues, singly or in combination, that distinguish the C-terminal region of PERV-C from PERV-A. Of the nine amino acids, two single-amino-acid substitutions, Q374R and I412V, restored the infectivity of human cells to the chimeric PERV-A/C to a titer equivalent to that of PERV-A. In contrast, PERV-A/C mutant envelope Q439P resulted in undetectable infection of human cells and an approximately 1,000-fold decrease in control pig cells. Mutation of K441R rescued mutants that carried Q439P, suggesting an incompatibility between the proline residue at this position and the presence of KK in the proteolytic cleavage signal. We confirmed this incompatibility with vectors carrying PERV-A envelope mutant R462K that were also rendered noninfectious. Finally, tropism of vectors carrying PERV-C envelope mutants with only four amino acid changes in the C terminus of PERV-C envelope, NHRQ436YNRP plus K441R, was shifted to one similar to that of PERV-A. Our results show an important and previously unrecognized role for infectivity and tropism for residues at the C terminus of SU.  相似文献   

17.
PERV is integrated into the genome of all pigs. PERV‐A and PERV‐B are polytropic and can productively infect human cell lines, whereas PERV‐C is ecotropic. Recombinant PERV‐A/C can infect human cells and exhibits high titer replication. Therefore, use of pigs for human xenotransplantation raises concerns about the risks of transfer of this infectious agent from donors to xenotransplantation recipients. To establish strategies to inhibit PERV production from cells, in the present study, we investigated the mechanism of PERV budding and anti‐PERV activity of Tetherin/BST‐2. The results showed that DN mutants of WWP‐2, Tsg101, and Vps4A/B markedly reduced PERV production in human and porcine cell lines, suggesting that PERV budding uses these cellular factors and the cellular MVB sorting pathway as well as many other retroviruses. Moreover, PERV production was also reduced by human and porcine Tetherin/BST‐2. These data are useful for developing strategies to inhibit PERV production and may reduce the risk of PERV infection in xenotransplantation.  相似文献   

18.
Hepatitis C virus (HCV) is a hepatotropic virus with a host-range restricted to humans and chimpanzees. Although HCV RNA replication has been observed in human non-hepatic and murine cell lines, the efficiency was very low and required long-term selection procedures using HCV replicon constructs expressing dominant antibiotic-selectable markers1-5. HCV in vitro research is therefore limited to human hepatoma cell lines permissive for virus entry and completion of the viral life cycle. Due to HCVs narrow species tropism, there is no immunocompetent small animal model available that sustains the complete HCV replication cycle 6-8. Inefficient replication of HCV in non-human cells e.g. of mouse origin is likely due to lack of genetic incompatibility of essential host dependency factors and/or expression of restriction factors.We investigated whether HCV propagation is suppressed by dominant restriction factors in either human cell lines derived from non-hepatic tissues or in mouse liver cell lines. To this end, we developed two independent conditional trans-complementation methods relying on somatic cell fusion. In both cases, completion of the viral replication cycle is only possible in the heterokaryons. Consequently, successful trans-complementation, which is determined by measuring de novo production of infectious viral progeny, indicates absence of dominant restrictions.Specifically, subgenomic HCV replicons carrying a luciferase transgene were transfected into highly permissive human hepatoma cells (Huh-7.5 cells). Subsequently, these cells were co-cultured and fused to various human and murine cells expressing HCV structural proteins core, envelope 1 and 2 (E1, E2) and accessory proteins p7 and NS2. Provided that cell fusion was initiated by treatment with polyethylene-glycol (PEG), the culture released infectious viral particles which infected naïve cells in a receptor-dependent fashion.To assess the influence of dominant restrictions on the complete viral life cycle including cell entry, RNA translation, replication and virus assembly, we took advantage of a human liver cell line (Huh-7 Lunet N cells 9) which lacks endogenous expression of CD81, an essential entry factor of HCV. In the absence of ectopically expressed CD81, these cells are essentially refractory to HCV infection 10 . Importantly, when co-cultured and fused with cells that express human CD81 but lack at least another crucial cell entry factor (i.e. SR-BI, CLDN1, OCLN), only the resulting heterokaryons display the complete set of HCV entry factors requisite for infection. Therefore, to analyze if dominant restriction factors suppress completion of the HCV replication cycle, we fused Lunet N cells with various cells from human and mouse origin which fulfill the above mentioned criteria. When co-cultured cells were transfected with a highly fusogenic viral envelope protein mutant of the prototype foamy virus (PFV11) and subsequently challenged with infectious HCV particles (HCVcc), de novo production of infectious virus was observed. This indicates that HCV successfully completed its replication cycle in heterokaryons thus ruling out expression of dominant restriction factors in these cell lines. These novel conditional trans-complementation methods will be useful to screen a large panel of cell lines and primary cells for expression of HCV-specific dominant restriction factors.  相似文献   

19.
K J Dunn  C C Yuan    D G Blair 《Journal of virology》1993,67(8):4704-4711
We have characterized the restriction mechanism for RD114 virus replication in embryonic feline cells (FeF). By comparing growth properties of the virus in FeF cells with its behavior in a fetal feline glial cell line (G355) permissive for RD114, we showed that both cell lines were readily infectible by virus grown in permissive cells and that no significant differences in viral integration or viral RNA expression could be detected. However, analysis of viral protein expression revealed differences in viral env gene processing in the two cell types. Envelope precursor pR85 was produced, but the expected processed gp70 product was detectable only in permissive (G355) cells. An envelope product of 85 kDa was packaged into virions produced by FeF cells, while virions produced by G355 cells contained the expected RD114 gp70. While the gp85 env-containing virions were infectious for permissive G355 cells, they were unable to infect FeF cells. The block to infection by the gp85-containing particles in FeF cells could be abrogated by treatment with the glycosylation inhibitor tunicamycin. Our results indicate that restriction of RD114 virus involves a novel mechanism dependent on two factors: altered glycosylation of the envelope to a gp85 form and an altered RD114 receptor in FeF cells.  相似文献   

20.
The Vif protein of human immunodeficiency virus type 1 is required for productive replication in peripheral blood lymphocytes and a limited number of immortalized T-lymphoid lines (nonpermissive cells). In contrast, Vif is fully dispensable for virus replication in other T-cell lines (permissive cells). Because the infection phenotype of released virions is determined by producer cells and by the presence of Vif in those cells, we have analyzed the protein contents of purified viral particles in an attempt to define compositional differences that could explain the infection phenotype. Surprisingly, we were unable to discern any Vif- or cell-type-dependent quantitative or qualitative difference in the Gag, Pol, and Env proteins of virions or virus-producing cells that correlates with virus infectivity. We were, however, able to demonstrate that Vif itself is present in virions and, using semiquantitative Western blotting (immunoblotting), that there is an average of 30 to 80 molecules of Vif incorporated into each virion. Importantly, parallel analyses of total lysates of the producer cells revealed that the cell-associated expression levels of Vif are close to those of the Gag proteins. Given the dramatically higher abundance of Vif in cells than in virions, we speculate that Vif exerts its principal activity during the processes of virus assembly and budding and that this function could be of a structural-conformational nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号