首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
One of the hallmarks of the latent phase of Kaposi’s sarcoma-associated herpesvirus (KSHV) infection is the global repression of lytic viral gene expression. Following de novo KSHV infection, the establishment of latency involves the chromatinization of the incoming viral genomes and recruitment of the host Polycomb repressive complexes (PRC1 and PRC2) to the promoters of lytic genes, which is accompanied by the inhibition of lytic genes. However, the mechanism of how PRCs are recruited to the KSHV episome is still unknown. Utilizing a genetic screen of latent genes in the context of KSHV genome, we identified the latency-associated nuclear antigen (LANA) to be responsible for the genome-wide recruitment of PRCs onto the lytic promoters following infection. We found that LANA initially bound to the KSHV genome right after infection and subsequently recruited PRCs onto the viral lytic promoters, thereby repressing lytic gene expression. Furthermore, both the DNA and chromatin binding activities of LANA were required for the binding of LANA to the KSHV promoters, which was necessary for the recruitment of PRC2 to the lytic promoters during de novo KSHV infection. Consequently, the LANA-knockout KSHV could not recruit PRCs to its viral genome upon de novo infection, resulting in aberrant lytic gene expression and dysregulation of expression of host genes involved in cell cycle and proliferation pathways. In this report, we demonstrate that KSHV LANA recruits host PRCs onto the lytic promoters to suppress lytic gene expression following de novo infection.  相似文献   

9.
10.
11.
12.
Kaposi's sarcoma herpesvirus (KSHV) belongs to the gamma-2 Herpesviridae and is associated with three neoplastic disorders: Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). The viral latency-associated nuclear antigen 1 (LANA) is expressed in all latently KSHV-infected cells and is involved in viral latent replication and maintenance of the viral genome. We show that LANA interacts with the ubiquitin-specific protease USP7 through its N-terminal TRAF (tumor necrosis factor [TNF] receptor-associated factor) domain. This interaction involves a short sequence (amino acids [aa] 971 to 986) within the C-terminal domain of LANA with strong similarities to the USP7 binding site of the Epstein-Barr virus (EBV) EBNA-1 protein. A LANA mutant with a deletion of the identified USP7 binding site showed an enhanced ability to replicate a plasmid containing the KSHV latent origin of replication but was comparable to the wild-type LANA (LANA WT) with regard to the regulation of viral and cellular promoters. Furthermore, the LANA homologues of two other gamma-2 herpesviruses, MHV68 and RRV, also recruit USP7. Our findings suggest that recruitment of USP7 to LANA could play a role in the regulation of viral latent replication. The recruitment of USP7, and its role in herpesvirus latent replication, previously described for the latent EBNA-1 protein of the gamma-1 herpesvirus (lymphocryptovirus) EBV (M. N. Holowaty et al., J. Biol. Chem. 278:29987-29994, 2003), may thereby be a conserved feature among gammaherpesvirus latent origin binding proteins.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Like other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV, also designated human herpesvirus 8) can establish a latent infection in the infected host. During latency a small number of genes are expressed. One of those genes encodes latency-associated nuclear antigen (LANA), which is constitutively expressed in cells during latent as well as lytic infection. LANA has previously been shown to be important for the establishment of latent episome maintenance through tethering of the viral genome to the host chromosomes. Under specific conditions, KSHV can undergo lytic replication, with the production of viral progeny. The immediate-early Rta, encoded by open reading frame 50 of KSHV, has been shown to play a critical role in switching from viral latent replication to lytic replication. Overexpression of Rta from a heterologous promoter is sufficient for driving KSHV lytic replication and the production of viral progeny. In the present study, we show that LANA down-modulates Rta's promoter activity in transient reporter assays, thus repressing Rta-mediated transactivation. This results in a decrease in the production of KSHV progeny virions. We also found that LANA interacts physically with Rta both in vivo and in vitro. Taken together, our results demonstrate that LANA can inhibit viral lytic replication by inhibiting expression as well as antagonizing the function of Rta. This suggests that LANA may play a critical role in maintaining latency by controlling the switch between viral latency and lytic replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号