首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang N  Fisher DB 《Plant physiology》1995,109(2):579-585
Nutrients required for the growth of the embryo and endosperm of developing wheat (Triticum aestivum L.) grains are released into the endosperm cavity from the maternal tissues across the nucellar cell plasma membranes. We followed the uptake and efflux of sugars into and out of the nucellus by slicing grains longitudinally through the endosperm cavity to expose the nucellar surface to experimental solutions. Sucrose uptake and efflux are passive processes. Neither was sensitive to metabolic inhibitors, pH, or potassium concentration. p-Chloromercuribenzene sulfonate, however, strongly inhibited both uptake and efflux, although not equally. Except for p-chloromercuribenzene sensitivity, these characteristics of efflux and the insensitivity of Suc movement to turgor pressure are similar to those of sucrose release from maize pedicels, but they contrast with legume seed coats. Although the evidence is incomplete, movement appears to be carrier mediated rather than channel mediated. In vitro rates of sucrose efflux were similar to or somewhat less than in vivo rates, suggesting that transport across the nucellar cell membranes could be a factor in the control of assimilate import into the grain.  相似文献   

2.
Fisher DB  Wang N 《Plant physiology》1995,109(2):587-592
Sucrose concentrations were measured in serial frozen sections of the post-phloem transport pathway in developing wheat (Triticum aestivum L.) grains. In normally importing grains, there was an approximately linear concentration gradient along the pathway, with a difference between the ends of the pathway of about 180 mM. This indicates an unusually low resistance for cell-to-cell transport, due perhaps to the large size-exclusion limit for the pathway. However, the existence of concentration gradients raises presently unresolvable questions about the relative contributions of diffusion versus bulk flow to transport within the symplast. The concentration gradient disappeared when sucrose movement ceased (i.e. in excised grains or when endosperm cavities of attached grains were perfused with p-chloromercuribenzene sulfonate [PCMBS] or with 1660 mOsm sorbitol). PCMBS appeared to block solute release into the endosperm cavity, whereas the sorbitol treatment, previously shown to cause localized plasmolysis in the chalaza, appeared to block movement across the chalaza. Sieve element/companion cell unloading appears to be an important control point for assimilate import. The sucrose concentration gradient and, probably, turgor and osmotic gradients are extremely steep there. PCMBS blocked import without affecting the sucrose concentration in the vascular parenchyma around the phloem. Thus, blockage of unloading was more complex than a simple "backing up" of solutes in the vascular parenchyma.  相似文献   

3.
In the developing wheat grain, photosynthate is transferred longitudinally along the crease phloem and then laterally into the endosperm cavity through the crease vascular parenchyma, pigment strand and nucellar projection. In order to clarify this cellular pathway of photosynthate unloading, and hence the controlling mechanism of grain filling, the potential for symplastic and apoplastic transfer was examined through structural and histochemical studies on these tissue types. It was found that cells in the crease region from the phloem to the nucellar projection are interconnected by numerous plasmodesmata and have dense cytoplasm with abundant mitochondria. Histochemical studies confirmed that, at the stage of grain development studied, an apoplastic barrier exists in the cell walls of the pigment strand. This barrier is composed of lignin, phenolics and suberin. The potential capacity for symplastic transfer, determined by measuring plasmodesmatal frequencies and computing potential sucrose fluxes through these plasmodesmata, indicated that there is sufficient plasmodesmatal cross-sectional area to support symplastic unloading of photosynthate at the rate required for normal grain growth. The potential capacity for membrane transport of sucrose to the apoplast was assessed by measuring plasma membrane surface areas of the various cell types and computing potential plasma membrane fluxes of sucrose. These fluxes indicated that the combined plasma membrane surface areas of the sieve element–companion cell (se–cc) complexes, vascular parenchyma and pigment strand are not sufficient to allow sucrose transfer to the apoplast at the observed rates. In contrast, the wall ingrowths of the transfer cells in the nucellar projection amplify the membrane surface area up to 22-fold, supporting the observed rates of sucrose transfer into the endosperm cavity. We conclude that photosynthate moves via the symplast from the se–cc complexes to the nucellar projection transfer cells, from where it is transferred across the plasma membrane into the endosperm cavity. The apoplastic barrier in the pigment strand is considered to restrict solute movement to the symplast and block apoplastic solute exchange between maternal and embryonic tissues. The implications of this cellular pathway in relation to the control of photosynthate transfer in the developing grain are discussed.  相似文献   

4.
The cellular pathway of sucrose transfer from the endosperm cavity to the starchy endosperm of developing grains of wheat (Triticum turgidum) has been elucidated. The modified aleurone and sub-aleurone cells exhibit a dense cytoplasm enriched in mitochondria and endoplasmic relicilium. Significantly, the sub-aleurone cells are characterized by secondary wall ingrowths. Numerous plasmodesmata interconnect all cells between the modified aleurone and starchy endosperm. The pro-tonophore carbonylcyanide-m-chlorophenyl hydrazone (CCCP) slowed [14C]sucrose uptake by grain tissue slices enriched in modified aleurone and sub-aleurone cells but had no effect on uptake by the starchy endosperm. The fluorescent weak acid sulphorhodamine G (SRG) was preferentially accumulated by the modified aleurone and sub-aleurone cells, and this uptake was sensitive to CCCP. The combined plasma membrane surface areas of the modified aleurone and sub-aleurone cells appeared to be sufficient to support the in vivo rates of sucrose transfer to the starchy endosperm. Plasmolysis of intact excised grain inhibited [14C]sucrose transfer from the endosperm cavity to the starchy endosperm. The sulphydryl group modifier p-chloromercuribenzenesulphonie acid (PCMBS) decreased [14C]sucrose uptake by the modified aleurone and sub-aleurone cells but had little effect on uptake by the starchy endosperm. In contrast, when PCMBS and [14C]sucrose were supplied to the endosperm cavity of intact excised grain, PCMBS slowed accumulation by all tissues equally. Estimates of potential sucrose fluxes through the interconnecting plasmodesmata were found to be within the published range. It is concluded that the bulk of sucrose is accumulated from the endosperm cavity by the modified aleurone and sub-aleurone cells and subsequently transferred through the symplast to the starchy endosperm.  相似文献   

5.
Various polar fluorescent tracers were used to characterize the pathways for apoplastic and symplastic transport in the "crease tissues" (i.e. the vascular strand, chalaza, nucellus, and adjacent pericarp) of developing wheat (Triticum aestivum L.) grains. With mostly minor exceptions, the results strongly support existing views of phloem unloading and post-phloem transport pathways in the crease. Apoplastic movement of Lucifer yellow CH (LYCH) from the endosperm cavity into the crease was virtually blocked in the chalazal cell walls before reaching the vascular tissue. However, LYCH could move slowly along the cell wall pathway from the chalaza into the vascular parenchyma. Slow uptake of LYCH into nucellar cell cytoplasm was observed, but no subsequent symplastic movement occurred. Carboxyfluorescein (CF) imported into attached grains moved symplastically from the phloem across the chalaza and into the nucellus, but was not released from the nucellus. In addition, CF moved in the opposite direction (nucellus to vascular parenchyma) in attached grains. Thus, the post-phloem symplastic pathway can accommodate bidirectional transport even when there is an intense net assimilate flux in one direction. When fresh sections of the crease were placed in fluorochrome solutions (e.g. LYCH or pyrene trisulfonate), dye was rapidly absorbed into intact cells, apparently via unsealed plasmodesmata. Uptake was not visibly reduced by cold or by respiratory inhibitors, but was greatly reduced by plasmolysis. Once absorbed, the dye moved intercellularly via the symplast. Based on this finding, a size-graded series of fluorescein-labeled dextrans was used to estimate the size-exclusion limits (SEL) for the post-phloem symplastic pathway. In most, and perhaps all, cells of the crease tissues except for the pericarp, the molecular diameter for the SEL was about 6.2 nm. The SEL in much of the vascular parenchyma may be smaller, but it is still at least 3.6 nm. Channel diameters would likely be about 1 nm larger, or about 4.5 to 7.0 nm in the vascular parenchyma and 7.0 nm elsewhere. These dimensions are substantially larger than those for "conventional" symplastic connections (about 3 nm), and would have a greater than proportionate effect on the per channel diffusive and hydraulic conductivities of the pathway. Thus, relatively small and probably ultrastructurally undetectable adjustments in plasmodesmatal structure may be sufficient to account for assimilate flux through the crease symplast.  相似文献   

6.
The water relations parameters involved in assimilate flow into developing wheat (Triticum aestivum L.) grains were measured at several points from the flag leaf to the endosperm cavity in normally watered (Psi approximately -0.3 MPa) and water-stressed plants (Psi approximately -2 MPa). These included direct measurement of sieve tube turgor and several independent approaches to the measurement or calculation of water potentials in the peduncle, grain pericarp, and endosperm cavity. Sieve tube turgor measurements, osmotic concentrations, and Psi measurements using dextran microdrops showed good internal consistency (i.e. Psi = Psi(s) + Psi(p)) from 0 to -4 MPa. In normally watered plants, crease pericarp Psi and sieve tube turgor were almost 1 MPa lower than in the peduncle. This suggests a high hydraulic resistance in the sieve tubes connecting the two. However, observations concerning exudation rates indicated a low resistance. In water-stressed plants, peduncle Psi and crease pericarp Psi were similar. In both treatments, there was a variable, approximately 1-MPa drop in turgor pressure between the grain sieve tubes and vascular parenchyma cells. There was little between-treatment difference in endosperm cavity sucrose or osmotic concentrations or in the crease pericarp sucrose pool size. Our results re-emphasize the importance of the sieve tube unloading step in the control of assimilate import.  相似文献   

7.
A potential cellular pathway for photosynthate transfer between the crease phloem and the starchy endosperm of the developing wheat grain has been delineated using fluorescent dyes. Membrane permeable and impermeable dyes have been introduced into the grain through the crease phloem, the endosperm cavity or the dorsal surface of the starchy endosperm. The movement of the symplastic tracer 5-(6)-6-carboxyfluorescein (CF) derived from 5-(6)-6-carboxyfluorescein diacetate (CFDA), from either direction between the crease phloem and the endosperm cavity, indicated that the symplastic pathway was operative from the crease phloem to the nucellar projection. Furthermore, the inward movement of apoplastic tracer trisodium, 3-hydroxy-5,8,10-pyrentrisulphonate (PTS) from the endosperm cavity and that of CF following plasmolysis showed that there was a high resistance to solute transfer within the apoplast of the pigment strand. All dyes entered the modified aleurone and adjacent sub-aleurone bordering the endosperm cavity. Subsequent movement of the symplastic tracers CF and sulphorhodamine G (SRG) into and through the endosperm was rapid. However, the movement of apoplastic tracers PTS and Calcofluor White (CFW) was relatively slow and with tissue plasmolysis, CF was confined to the cytoplasm of the modified aleurone and subaleurone cells. Together, these results demonstrate that there is a high resistance to solute movement within the apoplast of the cells bordering the endosperm cavity. We propose that photosynthate transfer is via the symplast to the nucellar projection where membrane exchange to the endosperm cavity occurs. Uptake from the cavity is by the modified aleurone and small endosperm cells prior to transfer through the symplast to and through the starchy endosperm.  相似文献   

8.
The reported inheritance pattern of the seg1 shrunken endosperm mutant of barley (Hordeum vulgare L. cv Betzes) suggests that some defective process in the maternal plant tissues, and not in the endosperm, prevents normal grain filling in the mutant. To identify the physiological mechanism of the mutation, we compared growth, carbon exchange, and assimilate transport of Betzes and seg1 plants. Betzes and seg1 plants did not differ in mean relative growth rate, mean net assimilation rate, or carbon exchange rate. The rate and duration of grain growth of seg1 was lower than Betzes on intact plants and on detached, cultured spikes. Increasing the supply of sucrose in culture media up to 300 mm sucrose did not eliminate differences between normal and mutant grain growth. Translocation of 14C-labeled assimilates into seg1 grains ceased by 21 days after anthesis, and assimilates were diverted to lower plant parts. In contrast, assimilates were still entering Betzes grains at 29 days after anthesis. Evidence suggests that some maternal spike or grain tissue is affected by the mutation after the onset of grain filling. Identification of the specific seg1 defect may provide information about the cessation of normal grain filling.  相似文献   

9.
Gradients along the transport pathway from the peduncle to the endosperm cavity were examined during grain filling in wheat. Sieve tube exudate was collected from severed aphid stylets established on the peduncle and rachis and on the vascular bundles in the creases of grains. Phloem exudate could also be collected from broken grain pedicels, and by puncturing the vascular bundle in the grain crease with a needle. Stylets on excised grains persisted exuding, indicating that grain sieve tubes are capable of loading solutes. There was little, if any, discernible gradient in osmolality or solute composition (sucrose, total amino acids) of sieve tube contents along the phloem pathway from the peduncle to the rachis or along the rachis itself. Neither was a gradient detected in osmolality along the sieve tube pathway from the rachis through the rachilla and grain stalk to the crease. Demonstrable solute gradients occurred only across those tissues of the grain crease between the crease sieve tubes and the endosperm cavity, a distance of just 1 millimeter. However, while the sucrose concentration in the sieve tubes was almost tenfold that in the endosperm cavity sap, total amino acids were only threefold higher, and the potassium concentrations of the two were equal. Our observations strongly implicate the movement of assimilates from the sieve tubes and across the crease tissues as important control points in grain filling.  相似文献   

10.
The aim of this study was to develop a valid and convenientexperimental system for exploring photosynthate transfer inthe developing wheat grain. Structural characteristics relatingto photosynthate transfer and the composition of the endospermcavity sap were examined during the linear stage of grain developmentat 25±3 d after anthesis. Based on the results of thesestudies, an experimental system was devised to permit the directmonitoring and manipulation of photosynthate transfer from theendosperm cavity to the storage endosperm. A novel approachwas used whereby insertions were made into the endosperm cavityby a needle at the embryo end and a piece of microcapillarytubing at the stigma end of the detached grain. By this means,the experimental solution was delivered into and flowed longitudinallyunder gravity through the endosperm cavity to exit at the stigmaend. The composition of the experimental solution reflected the principalsolute concentrations and osmolality of the in vivo endospermcavity contents. With the introduction of the solution intothe cavity, it was found that the viability of grain tissueswas maintained for up to 30 h. During a 24 h period both therate of sucrose uptake and subsequent incorporation into ethanolinsolublecomponents were shown to reproduce the rate of starch biosynthesisand in vivo grain growth. Moreover, the experimental systemeffectively reproduced the in vivo pathway of photosynthatetransfer from the endosperm cavity via the modified aleuronecells into the endosperm. As a result, this system providesa new approach to study photosynthate transfer in the developingwheat grain. Key words: Wheat grain, endosperm cavity, experimental system, photosynthate transport  相似文献   

11.
The volume and composition of the endosperm apoplast of thedeveloping wheat grain, comprising endosperm cavity and intercellularfree-space, was examined in relation to kernel growth rate andsize. Samples of the cavity sap were collected by centrifugationof kernels during the linear phase of grain growth. The cavitysap contained 10–50 mM sucrose, a small amount of hexosesbut a high concentration of oligosaccharides (up to 9 timesthat of sucrose). In comparing cvs Yandilla King and Cleveland,high growth rate was associated with high cavity sap sucroseconcentration but with low K+ concentration. K+ concentrationin the endosperm cells (124 mM) was about 5 times higher thanin the cavity sap (10–40 mM). Cavity sap pH was 6.3–6.6.The uptake of sucrose by endosperm cells was partly inhibitedby PCMBS, an inhibitor of membrane-bound carriers. Several necessaryconditions for proton cotransport during sucrose uptake by endospermcells were met. The volume of the intercellular free-space, estimated by membranepermeating (14C-mannitol, 14C-sucrose) or non-permeating (3H-PEG900)markers averaged 2.2 µl or 5–7% of the water ingrains of cvs Yandilla King, Cleveland and SUN 9E. The cavityvolume was highly variable but tended to be larger in largergrains. Pulse labelling of 14CO2 to flag leaves showed that 14C-sucrosewas the principal 14C-assimilate in the cavity sap and was convertedto insoluble compounds in the endosperm while the cavity sapoligosaccharides acquired negligible label in 6 h. Key words: Wheat, Endosperm apoplast, Sugars  相似文献   

12.
Zheng Y  Wang Z 《Plant cell reports》2011,30(7):1281-1288
In cereal seed, there are no symplastic connections between the maternal tissues and the endosperm. In order to facilitate solute transport, both the nucellar projection and its opposite endosperm epithelial cells in wheat caryopsis differentiate into transfer cells. In this paper, we did contrast observation and investigation of wheat endosperm transfer cells (ETC) and nucellar projection transfer cells (NPTC). The experimental results showed that there were some similarities and differences between ETC and NPTC. ETC and NPTC almost developed synchronously. Wall ingrowths of ETC and NPTC formed firstly in the first layer nearest to the endosperm cavity, and formed later in the inner layer further from the endosperm cavity. The mature ETC were mainly three layers and the mature NPTC were mainly four layers. Wall ingrowths of ETC were flange type and wall ingrowths of NPTC were reticulate type. NPTC were not nutrient-storing cells, but the first layer of ETC had aleurone cell features, and the second layer and third layer of ETC accumulated starch granules and protein bodies.  相似文献   

13.
14.
Seed growth and accumulation of storage products relies on the delivery of sucrose from the maternal to the filial tissues. The transport route is hidden inside the seed and has never been visualized in vivo. Our approach, based on high‐field nuclear magnetic resonance and a custom made 13C/1H double resonant coil, allows the non‐invasive imaging and monitoring of sucrose allocation within the seed. The new technique visualizes the main stream of sucrose and determines its velocity during the grain filling in barley (Hordeum vulgare L.). Quantifiable dynamic images are provided, which allow observing movement of 13C‐sucrose at a sub‐millimetre level of resolution. The analysis of genetically modified barley grains (Jekyll transgenic lines, seg8 and Risø13 mutants) demonstrated that sucrose release via the nucellar projection towards the endosperm provides an essential mean for the control of seed growth by maternal organism. The sucrose allocation was further determined by structural and metabolic features of endosperm. Sucrose monitoring was integrated with an in silico flux balance analysis, representing a powerful platform for non‐invasive study of seed filling in crops.  相似文献   

15.
The hypothesis that Zn and Mn are transported within the grain in a similar manner to sucrose was investigated in the developing wheat grain. Detached ears were cultured in solution containing 65Zn, 54Mn and [14C]-sucrose for 10 to 120 min at 18–22 days post-anthesis. At different times the grain was cut transversely into 1-mm sections and the radioactivity in each section determined The embryo region was damaged in some grains to investigate the effect of reduced accumulation rate on the transport of 65Za, 54Mn and [14C]-sucrose to the embryo. The distribution of 65Zn. 54Mn and [14C]-sucrose between the endosperm cavity sap. endosperm, embryo and pericarp in grains labelled for 2.5 and 6 h at 18–22 days post-anthesis was also determined. [14C]-su-crose was initially high in the first, embryo-containing section of the grain but decreased progressively to the distal end of the grain. The amount of 65Zn along the longitudinal axis of the grain was distributed evenly in each 1-mm section, whilst 54Mn accumulated exponentially in the first proximal 1-mm section of the grain and was distributed evenly in the remaining sections. Damaging the embryo had no effect on 65Zn and 54Mn transport to the section containing the embryo. The pericarp contained almost all of the grain 65Za and 54Mn, with small amounts found in the embryo, endosperm and endosperm cavity sap. Increasing amounts of [14C]-sucrose were found in the endosperm as time progressed. The rate of accumulation of 65Zn, 54Mn and [14C]-sucrose was much higher in the embiyo than the endosperm: the difference between the embryo and endosperm was especially large for 65Zn and 54Mn. It is suggested that 65Zn and 54Mn are not transported within the grain in the same way as [14C]-sucrose. [14C]-sucrose moves laterally out of the vascular system of the crease into the endosperm cavity and is subsequently taken up and stored in the endosperm. In contrast, 65Zn and 54Mn appear to be retained within the vascular system of the crease and may be transported more slowly to grain parts such as the embryo and pericarp tissue.  相似文献   

16.
17.
The amino acid composition of endosperm cavity sap and of sieve tube saps from the flag leaf, peduncle, rachis, grain pedicel, and grain were determined for wheat plants just past the mid-half of grain filling. On a mole percent basis, glutamine accounted for almost half of the amino acids in sieve tube sap from the peduncle and ear. Other protein amino acids, plug γ-aminobutyrate, were present in varying, but mostly low (a few mole percent) proportions. The amino acid composition of phloem exudate resembled that of the mature wheat grain. The proportions of amino acids in the endosperm cavity were generally similar to those of the sieve tube sap supplying the grain. Cysteine, however, while virtually absent from sieve tube sap, comprised 1 to 2 mole percent of amino acids in the endosperm cavity, suggesting it is transported in a different form. Also, alanine and, to a lesser extent, glutamate were relatively more prominent in endosperm cavity sap than in the sieve tube sap. Thus, while most amino acids were more concentrated in the sieve tube sap than in the endosperm cavity sap, alanine and glutamate appeared to be moving from the sieve tube to the endosperm cavity in the absence of, or perhaps even against, their concentration gradients.  相似文献   

18.
Previous work showed that the segl mutant of barley (Hordeum vulgare cv Betzes) did not differ from normal Betzes in plant growth, photosynthesis, or fertility, but it produced only shrunken seeds regardless of pollen source. To determine whether defects in sucrose uptake or starch synthesis resulted in the shrunken condition, developing grains of Betzes and segl were cultured in [14C]sucrose solutions after slicing transversely to expose the endosperm cavity and free space. In both young grains (before genotypes differed in dry weight) and older grains (17 days after anthesis, when segl grains were smaller than Betzes), sucrose uptake and starch synthesis were similar in both genotypes on a dry weight basis. To determine if sucrose was hydrolyzed during uptake, spikes of Betzes and segl were allowed to take up [fructose-U-14C]sucrose 14 days after anthesis and the radioactivity of endosperm sugars was examined during 3 hours of incubation. Whereas less total radioactivity entered the endosperm and the endosperm cavity (free space) of segl, in both genotypes over 96% of the label of endosperm sugars was in sucrose, and there was no apparent initial or progressive randomization of label among hexose moieties of sucrose as compared to the free space sampled after 1 hour of incubation. We conclude that segl endosperms are capable of normal sucrose uptake and starch synthesis and that hydrolysis of sucrose is not required for uptake in either genotype. Evidence suggests abnormal development of grain tissue of maternal origin during growth of segl grains.  相似文献   

19.
The endosperm and embryo that constitute the filial tissues of rice caryopsis are isolated from the maternal tissues by the absence of any symplastic continuity. Nutrients are transported to the endosperm through a single ovular vascular trace present on the ventral side of the ovary. Initially solute enters through the chalaza into the nucellar projection and then into the endosperm. At later stages transport occurs through the nucellar epidermis, centripetally towards the endosperm. The cell walls of the nucellar epidermis are provided with rib-like thickenings. A comparison of grain-filling in C3 and C4 cereals suggests that rice has structural features allied to C3 cereals, such as wheat, but with significant differences.  相似文献   

20.
The results of studies on assimilate and water transport in the developing caryopsis of rice are summarised. Evidence is presented for a symplastic movement of solutes as far as the aleurone layer. However, transport into the apoplast at the nucellus/aleurone interface appears to be a necessary step due to the absence of plasmodesmata at this site. It is suggested that water leaves the caryopsis during grain filling by the isolated cell walls of the pigment strand, the suberised walls of these cells functioning to isolate the apoplast from the symplast and thereby allowing opposing fluxes of water and assimilates to occur in the dorsal region of the grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号