首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
目的:建立具有高分辨率和稳定性的乳腺纤维瘤组织蛋白质组的双向电泳图谱,并对其进行差异蛋白质组分析.方法:取乳腺纤维瘤病患者病变部位及正常乳腺组织,匀浆提取乳腺组织总蛋白,分别用Cy3或Cy5标记,每一时Cy3和cy5标记样品都与一个Cy2标记的内标等量混合,上样于同一胶中进行电泳分离,经不同光激发下扫描得到不同样品的蛋白质组图谱.所获得的图谱经DeCyder软件分析.结果:在乳腺纤维瘤病的病变组织中,有37个蛋白质表达水平显著增加,另外8个蛋白质表达水平显著下降.结论:分析所得的45个差异蛋白质可能与乳腺纤维瘤疾病的发生与发展有关.  相似文献   

2.
目的:建立具有高分辨率和稳定性的乳腺增生组织蛋白质组的双向电泳图谱,并对其进行差异蛋白质组分析。方法:取乳腺增生病患者增生部位及正常部位乳腺组织,匀浆提取乳腺组织总蛋白,分别用Cy3或Cy5标记,每一对Cy3和Cy5标记样品都与一个Cy2标记的内标等量混合,上样于同一胶中进行电泳分离,经不同光激发下扫描得到不同样品的蛋白质组图谱。所获得的图谱经DeCyder软件进行分析。结果:在乳腺增生病增生的组织中,有12个蛋白质表达水平显著增加,另外3个蛋白质表达水平显著下降。结论:利用DIGE技术可以作胶内时比分析,也可以根据内标消除胶与胶之间的差异,提高统计的可信度;分析所得的15个差异蛋白质可能与乳腺增生疾病的发生与发展有关。  相似文献   

3.
通过差速离心分离大鼠心肌线粒体,利用蛋白质组学技术构建正常大鼠心肌线粒体蛋白质组表达图谱;选用心肌梗死诱导的心力衰竭大鼠模型,分析比较心力衰竭时心肌线粒体蛋白质表达谱的改变.与正常对照组相比,心力衰竭大鼠心肌线粒体共有188个蛋白点的表达量发生了变化,其中有120个蛋白点表达上调2倍以上,有68个蛋白点表达下调1/2以上(P〈0.05).对差异表达的蛋白点行胶内酶解后质谱鉴定和数据库检索,对蛋白质进行功能注释、亚细胞定位和生物信息学分析,其中有27个蛋白质涉及能量代谢和氧化应激,其中参与糖酵解及三羧酸循环的蛋白质(酶)表达上调,而参与OXPHOS复合体和脂肪酸代谢的蛋白质(酶)表达下调.研究结果表明,心力衰竭时心肌能量代谢模式发生了改变,底物选择从倾向于脂肪酸转为葡萄糖利用增加,糖酵解增强而脂肪酸氧化能力减低;为心肌缺血性损伤时线粒体结构和功能改变提供了分子依据,在蛋白质水平上阐述了线粒体在心力衰竭发展中的可能机制.  相似文献   

4.
大鼠同种异体肝移植急性排异反应的蛋白质组学研究   总被引:2,自引:0,他引:2  
为更好的理解原位肝移植免疫排异反应的分子机理, 分别建立了大鼠同种异体肝移植的动物模型作为急性排异组和大鼠同基因移植的动物模型作为非排异对照组. 利用荧光差异显示双向凝胶电泳并整合内标法与正、反相荧光标记, 对急性排异组和对照组大鼠肝移植后的肝组织蛋白质表达谱进行了定量蛋白质组学研究. 结果表明, 有27个蛋白点的表达水平在急性排异组有显著差异, 其中13个蛋白点表达水平上调, 与对照组相比比值变化超过1.5倍以上, 而14个蛋白点表达水平下调, 其相应比值变化超过至少1.5倍以上. 19个差异表达蛋白经胶内酶切后, 利用基质辅助激光解析电离飞行时间质谱获得相应的肽指纹图谱并结合数据库搜索得到鉴定. 这些差异蛋白的分子功能主要表现为氧化还原活性及离子结合活性. 实验结果将有助于进一步了解器官移植排异反应的分子机理.  相似文献   

5.
双向凝胶电泳中三种蛋白质检测方法的比较   总被引:5,自引:0,他引:5  
高通量双向电泳是蛋白质组学的核心 ,双向电泳凝胶上蛋白质点的检测方法应具有灵敏度高、线性范围宽和兼容质谱鉴定等优点 .采用差异凝胶电泳 (differencegelelectrophoresis ,DIGE)技术以Cy3(1 (5 carboxypentyl) 1′ propylindocarbocyaninehalideN hydroxysuccinimidylester)和Cy5 (1 (5 carboxypentyl) 1′ methylindodicarbocyaninehalideN hydroxysuccinimidylester)荧光分别标记正常和TNF α处理细胞的蛋白质 ,用Cy2 (3 (4 carboxymethyl)phenylmethyl) 3′ ethyloxacarbocyaninehalideN hydroxysuccinimidylester)荧光标记正常和TNF α处理细胞蛋白质的等量混合样品作为内标 ,混合 3种荧光标记的蛋白质后 ,在同一等电聚焦胶条进行聚焦 ,然后在聚丙烯酰胺凝胶上进行第二向电泳 ,用 3种波长的激光激发扫描得到凝胶图象 ,DIGE中多个样品在同一条件下电泳 ,因而匹配率高 ,且引入内标使蛋白质点的检测与定量更为准确 .DIGE技术与质谱相结合 ,实现了高通量和相对准确定量 .与硝酸银和考马斯亮蓝染色结果相比较 ,DIGE技术具有灵敏度高、线性范围宽和不影响后续质谱鉴定等优点  相似文献   

6.
建立食源性肥胖大鼠模型,对正常大鼠和肥胖大鼠下丘脑全蛋白进行双向凝胶电泳,产生下丘脑蛋白双向凝胶电泳图谱.对图谱进行比对分析后,从凝胶上切取差异表达的蛋白点,经胶内酶解,通过基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF-MS) 对酶解后的肽段进行分析,再经数据库(NCBInr)检索,对蛋白质进行鉴定.研究发现,正常组表达图谱可检测到1 160±15(n=5)个蛋白点,肥胖组表达图谱可检测到1 070±10 (n=5)个蛋白点,与对照组相比,匹配率大于80%.并且成功鉴定了17种差异表达蛋白质,其中有7 种在肥胖组表达上调,10种表达下调.它们分别属于代谢酶、细胞周期调控因子、抗氧化蛋白、信号传导蛋白、蛋白酶体相关蛋白、细胞骨架蛋白以及未知蛋白等. 与正常对照组相比,肥胖组的蛋白质表达存在着较大差异,通过对差异表达蛋白的分析,提示了在肥胖发生的过程中,下丘脑神经中枢经历了一个非常复杂的信号活动和特定改变,为深入认识肥胖的发病机制奠定了基础.  相似文献   

7.
目的:探讨中等强度有氧运动对大鼠心房肌蛋白质组及其基因差异表达的影响,为运动心脏重塑和慢性心血管疾病康复研究提供研究依据。方法:20只雄性SD大鼠按照体重随机配对分为对照组、实验组(n=10),实验组大鼠每次按照速度24 m·min-1、持续训练40 min (负荷强度相当于60%~70% VO2max),每周训练6 d,持续训练4周中等强度有氧运动。应用双向凝胶电泳技术(2-DE)分离心房肌蛋白质点,串联飞行时间质谱仪技术鉴定电泳结果中表达量上调≥5倍以上,下调至1/5以下的13个备选目标蛋白质点。并对其中6个目标蛋白质用逆转录-聚合酶链式反应(RT-PCR)技术检测其mRNA。结果:通过软件分析,实验组与对照组比较,其中表达量下调至20%以下的点8个,上调5倍及以上点有5个,质谱鉴定分析其中的13个蛋白质点,最终鉴定出8种蛋白质和一个分子量为54 KDa的未知蛋白,包括:丙酮酸脱氢酶E1α1、线粒体乌头酸水合酶、蛋白质二硫键异构酶A3、甲基丙二酸半醛脱氢酶、线粒体二氢硫辛酸脱氢酶、异戊酰辅酶A脱氢酶、谷胱甘肽合成酶、丝裂素活化蛋白激酶3等。RT-PCR检测结果表明,与对照组相比,4周中等强度有氧运动后,大鼠心房肌中甲基丙二酸半醛脱氢酶的mRNA表达量降低(P﹤0.05),线粒体二氢硫辛酸脱氢酶、蛋白质二硫键异构酶A3、线粒体乌头酸水合酶、谷胱甘肽合成酶的mRNA表达量降低(P>0.05);异戊烯辅酶A脱氢酶的mRNA表达量增高(P>0.05),表明mRNA表达水平与质谱鉴定结果的变化不完全一致。结论:4周的中等强度有氧运动诱导大鼠心房肌蛋白质组发生显著变化,有13个明显变化的目标蛋白,多数为能量物质代谢酶,这些目标蛋白质的变化与其mRNA表达量的变化并不完全一致,表明中等强度运动可能影响这些目标蛋白质上游基因转录的调控,也可影响下游翻译﹑修饰等的调控,导致表达的差异变化。  相似文献   

8.
对线粒体蛋白质组的鉴定和分析有助于理解线粒体的功能和相关疾病的发病机制, 包括能量代谢、凋亡、自由基产生、产热作用、钙离子信号通路等. 本实验旨在鉴定人类肝脏线粒体蛋白质组中的抗原优势蛋白. 用线粒体蛋白质作为免疫原, 经过细胞融合、筛选和克隆, 制备了240多个单克隆抗体杂交瘤细胞系. 单克隆抗体识别的线粒体蛋白抗原通过人类肝脏cDNA表达文库筛选方法鉴定, 相应的线粒体蛋白质的亚细胞定位通过免疫组化证实. 发现了肝脏线粒体中6个抗原优势蛋白, 分别被至少两种特异性的单克隆抗体所识别. 这6个蛋白分别是乙酰辅酶A酰基转移酶(线粒体3-酮酯酰辅酶A硫解酶)2、醛脱氢酶1家族A1、氨甲酰磷酸合成酶1、二氢硫辛酰胺S乙酰转移酶(丙酮酸脱氢酶复合物的E2组分)、烯酰辅酶A水合酶1和羟基类固醇(11β)脱氢酶1. 这些单克隆抗体有望应用于人类肝脏蛋白质组计划的相关研究, 如去除优势蛋白、蛋白与蛋白之间相互作用的研究和验证等.  相似文献   

9.
目的:寻找应激心肌损伤相关蛋白.方法:建立束缚应激心肌损伤模型,制备心室肌2DE蛋白样品和心肌2DE图谱,图像分析软件分析应激后蛋白表达差异点,MALDI-TOF-MS-数据库搜索鉴定蛋白质.结果:应激前后10个蛋白表达量发生改变,其中8个应激后表达显著升高,经质谱鉴定为心肌肌球蛋白、白蛋白、脂蛋白A-I前体等;2个显著降低,经质谱鉴定为线粒体能量代谢酶类和UCP3.结论:这些差异蛋白可能参与应激机体心肌损伤的发生.  相似文献   

10.
为了揭示细胞对盐胁迫渗透适应的分子机制,以新鉴定的中度嗜盐芽孢杆菌Bacillussp.I121为实验材料,分析了该嗜盐菌质膜上的盐胁迫响应蛋白.为此,通过蓝色温和凝胶双向电泳(BN/SDS-PAGE)对纯化的质膜组分进行了差异蛋白质组学研究.经MALDI-TOF/TOF质谱分析,鉴定了8个盐胁迫响应蛋白.盐胁迫诱导上调表达的蛋白质包括ABC型转运蛋白、3-磷酸甘油透性酶、嘧啶核苷转运蛋白和甲酸脱氢酶,下调表达的蛋白质包括琥珀酸脱氢酶(succinate dehydrogenase)铁硫亚基、黄素蛋白亚基、细胞色素b556亚基以及分子伴侣DnaJ的同源蛋白;酶活力测定结果表明胁迫条件下上述蛋白质的活性变化与表达量变化相一致.这些蛋白质中绝大多数属于高度疏水的跨膜蛋白,主要负责物质跨膜运输及能量代谢.上述结果表明,中度嗜盐菌Bacillus sp.I121可通过加快跨膜物质运输,同时抑制TCA循环完成盐胁迫条件下相容性溶质脯氨酸和四氢嘧啶的合成与积累.也进一步证明,蓝色温和凝胶双向电泳不仅可用于线粒体、叶绿体中蛋白质复合物的分析,也同样适用于细胞质膜上高度疏水蛋白复合物的比较研究.  相似文献   

11.
Two-dimensional difference gel electrophoresis (2-D DIGE) coupled with mass spectrometry (MS) was used to investigate tumor-specific changes in the proteome of human colorectal cancers and adjacent normal mucosa. For each of six patients with different stages of colon cancer, Cy5-labeled proteins isolated from tumor tissue were combined with Cy3-labeled proteins isolated from neighboring normal mucosa and separated on the same 2-D gel along with a Cy2-labeled mixture of all 12 normal/tumor samples as an internal standard. Over 1500 protein spot-features were analyzed in each paired normal/tumor comparison, and using DIGE technology with the mixed-sample internal standard, statistically significant quantitative comparisons of each protein abundance change could be made across multiple samples simultaneously without interference due to gel-to-gel variation. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and tandem (TOF/TOF) MS provided sensitive and accurate mass spectral data for database interrogation, resulting in the identification of 52 unique proteins (including redundancies due to proteolysis and post-translationally modified isoforms) that were changing in abundance across the cohort. Without the benefit of the Cy2-labeled 12 sample mixture internal standard, 42 of these proteins would have been overlooked due to the large degree of variation inherent between normal and tumor samples.  相似文献   

12.
Zhang X  Guo Y  Song Y  Sun W  Yu C  Zhao X  Wang H  Jiang H  Li Y  Qian X  Jiang Y  He F 《Proteomics》2006,6(19):5260-5268
Normal Chinese Liver Proteome Expression Profile is one of the major parts of Human Liver Proteome Project. Before starting the studies, it is necessary to examine the interindividual variation of normal liver proteome and evaluate the minimal size of samples for proteomic analysis. In this study, normal liver samples from ten individual volunteers were collected and the proteome profiles of these samples were analyzed using 2-D difference gel electrophoresis (DIGE) combined with MALDI-TOF/TOF MS. The individual liver tissue lysates were labeled with Cy3 and Cy5 while the pooled sample was labeled with Cy2 as an internal standard, which minimized gel-to-gel variation. After analysis by the DeCyder software, up to 2056 protein spots were detected on the master gel. The CV of standardized abundance was calculated for the protein spots that were matched across all ten gels. The CV values of these protein spots ranged from 6.4 to 108.5% and the median CV was approximately 19%, which demonstrated that the protein expression of normal liver among different individuals was relatively stable. The eight proteins with CV values over 50% were identified which would be a caveat when considering these proteins as potential disease-related markers. Moreover, the one-way ANOVA feature showed a correlation between sample size and individual variations. The results showed that when the sample size exceeded 7, the individual variations were not significant to the whole pool. Our results are an important basis for liver protein expression profiles and comparative proteomics of liver disease.  相似文献   

13.
The comparison of two-dimensional (2-D) gel images from different samples is an established method used to study differences in protein expression. Conventional methods rely on comparing images from at least 2 different gels. Due to the high variation between gels, detection and quantification of protein differences can be problematic. Two-dimensional difference gel electrophoresis (Ettan trade mark DIGE) is an emerging technique for comparative proteomics, which improves the reproducibility and reliability of differential protein expression analysis between samples. In the application of DIGE different samples are labelled with mass and charge matched spectrally resolvable fluorescent dyes and are then separated on the same 2-D gel. Using an Escherichia coli lysate "spiked" with varying amounts of four different known proteins, we have tested a novel experimental design that exploits the sample multiplexing capabilities of DIGE, by including a standard sample in each gel. The standard sample comprises equal amounts of each sample to be compared and was found to improve the accuracy of protein quantification between samples from different gels allowing accurate detection of small differences in protein levels between samples.  相似文献   

14.
Two-dimensional gel electrophoresis (2DE) is a central tool of proteome research, since it allows separation of complex protein mixtures at highest resolution. Quantification of gene expression at the protein level requires sensitive visualization of protein spots over a wide linear range. Two-dimensional difference gel electrophoresis (2D DIGE) is a new fluorescent technique for protein labeling in 2DE gels. Proteins are labeled prior to electrophoresis with fluorescent CyDyes trade mark and differently labeled samples are then co-separated on the same 2DE gel. We evaluated 2D DIGE for detection and quantification of proteins specific for glucose or N-acetylglucosamine metabolism in the marine bacterium Pirellula sp. strain 1. The experiment was based on 10 parallel 2DE gels. Detection and comparison of the protein spots were performed with the DeCyder trade mark software that uses an internal standard to quantify differences in protein abundance with high statistical confidence; 24 proteins differing in abundance by a factor of at least 1.5 (t test value <10(-9)) were identified. For comparison, another experiment was carried out with four SYPRO-Ruby-stained 2DE gels for each of the two growth conditions; image analysis was done with the ImageMaster trade mark 2D Elite software. Sensitivity of the CyDye fluors was evaluated by comparing Cy2, Cy3, Cy5, SYPRO Ruby, silver, and colloidal Coomassie staining. Three replicate gels, each loaded with 50 microg of protein, were run for each stain and the gels were analyzed with the ImageMaster software. Labeling with CyDyes allowed detection of almost as many protein spots as staining with silver or SYPRO Ruby.  相似文献   

15.
Today biomarker discovery is one of the most active aspects of proteomic investigations. However, the wide dynamic range of plasma proteins makes the analysis very challenging because high abundance proteins tend to mask those of lower abundance. Using a large bead-based library of combinatorial peptide ligands (Equalizer beads or ProteoMiner), the dynamic range of the protein concentration is compressed, the high abundance proteins present in the sample are reduced and the low abundance proteins are enriched, while retaining representatives of all proteins within the sample. In the present study, the combination of beads with surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) and two-dimensional differential gel electrophoresis (2-D DIGE) technology were evaluated considering efficiency, reproducibility, sensitivity, and compatibility. The bead technology is easily compatible with both SELDI-TOF-MS and 2-D DIGE and the samples can be analyzed directly without any processing of the sample. The use of the beads prior SELDI-TOF-MS and 2-D DIGE enabled detection of many new protein spots/peaks and increased resolution and improved intensity of low abundance proteins in a reproducible fashion compared with the depletion technique. Several proteins have been identified by the combination of beads, 2-D DIGE and MS for example different kinds of complement factors and cytoskeletal proteins. Our data suggest that integration of the bead technology with our current proteomic technologies will enhance the possibility to deliver new peptide/protein biomarker candidates in our projects.  相似文献   

16.
During the peri-implantation period, molecular signaling between embryo and endometrium (layer of tissue lining the uterus lumen) is supposed to be crucial for the maintenance of pregnancy. To investigate embryo-induced alterations in the proteome of bovine endometrium in the preattachment period (day 18), we used monozygotic cattle twins (generated by embryo splitting) as a model eliminating genetic variability as a source for proteome differences. One of the twins was pregnant after the transfer of two in vitro produced blastocysts, while the corresponding twin received a sham-transfer and served as a nonpregnant control. The two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) analysis of the endometrium samples of three twin pairs (pregnant/nonpregnant) revealed four proteins with significantly higher abundance (p < 10(-9)) in each sample derived from the pregnant animals: Rho GDP dissociation inhibitor beta; 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD); soluble NADP(+)-dependent isocitrate dehydrogenase 1; and acyl-CoA-binding protein. To verify the accuracy of the 2-D DIGE quantification, the abundances of 20 alpha-HSD were quantified by a targeted cleavable isotope-coded affinity tag (ICAT) approach. The mass spectrometry-based ICAT quantification matched perfectly the results obtained by 2-D DIGE quantification, demonstrating the accuracy of our data. These results demonstrate that our model (monozygotic twins) in combination with the appropriate analytical tools is particularly suitable for the detection of the proteins involved in the embryo-maternal interactions.  相似文献   

17.
The technique of fluorescent two-dimensional (2D) difference gel electrophoresis for differential protein expression analysis has been evaluated using a model breast cancer cell system of ErbB-2 overexpression. Labeling of paired cell lysate samples with N-hydroxy succinimidyl ester-derivatives of fluorescent Cy3 and Cy5 dyes for separation on the same 2D gel enabled quantitative, sensitive, and reproducible differential expression analysis of the cell lines. SyproRuby staining was shown to be a highly sensitive and 2D difference gel electrophoresis-compatible method for post-electrophoretic visualization of proteins, which could then be picked and identified by matrix-assisted laser-desorption ionization mass spectroscopy. Indeed, from these experiments, we have identified multiple proteins that are likely to be involved in ErbB-2-mediated transformation. A triple dye labeling methodology was used to identify proteins differentially expressed in the cell system over a time course of growth factor stimulation. A Cy2-labeled pool of samples was used as a standard with all Cy3- and Cy5-labeled sample pairs to facilitate cross-gel quantitative analysis. DeCyder (Amersham Biosciences, Inc.) software was used to distinguish clear statistical differences in protein expression over time and between the cell lines.  相似文献   

18.
Surface proteins are central to the cell''s ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.Open in a separate windowClick here to view.(76M, flv)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号