首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The investigation of the interplay between genes, proteins, metabolites and diseases plays a central role in molecular and cellular biology. Whole genome sequencing has made it possible to examine the behavior of all the genes in a genome by high-throughput experimental techniques and to pinpoint molecular interactions on a genome-wide scale, which form the backbone of systems biology. In particular, Bayesian network (BN) is a powerful tool for the ab-initial identification of causal and non-causal relationships between biological factors directly from experimental data. However, scalability is a crucial issue when we try to apply BNs to infer such interactions. In this paper, we not only introduce the Bayesian network formalism and its applications in systems biology, but also review recent technical developments for scaling up or speeding up the structural learning of BNs, which is important for the discovery of causal knowledge from large-scale biological datasets. Specifically, we highlight the basic idea, relative pros and cons of each technique and discuss possible ways to combine different algorithms towards making BN learning more accurate and much faster.  相似文献   

2.
GSEA是一个可下载后免费使用的全基因组表达谱芯片数据分析工具。它根据已有的对基因的定位、性质、功能、生物学意义等知识的基础上,首先构建了一个分子标签数据库,数据库中包含了多个功能基因集。通过分析一组处于两个生物学状态的基因表达谱杂交数据,它们在特定的功能基因集中的表达状况,以及这种表达状况是否存在某种统计学显著性。GSEA是从另一个角度来诠释生物信息,可进一步完善我们对相关生物学事件的认识。  相似文献   

3.
The functioning of even a simple biological system is much more complicated than the sum of its genes, proteins and metabolites. A premise of systems biology is that molecular profiling will facilitate the discovery and characterization of important disease pathways. However, as multiple levels of effector pathway regulation appear to be the norm rather than the exception, a significant challenge presented by high-throughput genomics and proteomics technologies is the extraction of the biological implications of complex data. Thus, integration of heterogeneous types of data generated from diverse global technology platforms represents the first challenge in developing the necessary foundational databases needed for predictive modelling of cell and tissue responses. Given the apparent difficulty in defining the correspondence between gene expression and protein abundance measured in several systems to date, how do we make sense of these data and design the next experiment? In this review, we highlight current approaches and challenges associated with integration and analysis of heterogeneous data sets, focusing on global analysis obtained from high-throughput technologies.  相似文献   

4.
This study explores the conceptual history of systems biology and its impact on philosophical and scientific conceptions of reductionism, antireductionism and emergence. Development of systems biology at the beginning of 21st century transformed biological science. Systems biology is a new holistic approach or strategy how to research biological organisms, developed through three phases. The first phase was completed when molecular biology transformed into systems molecular biology. Prior to the second phase, convergence between applied general systems theory and nonlinear dynamics took place, hence allowing the formation of systems mathematical biology. The second phase happened when systems molecular biology and systems mathematical biology, together, were applied for analysis of biological data. Finally, after successful application in science, medicine and biotechnology, the process of the formation of modern systems biology was completed.Systems and molecular reductionist views on organisms were completely opposed to each other. Implications of systems and molecular biology on reductionist–antireductionist debate were quite different. The analysis of reductionism, antireductionism and emergence issues, in the era of systems biology, revealed the hierarchy between methodological, epistemological and ontological antireductionism. Primarily, methodological antireductionism followed from the systems biology. Only after, epistemological and ontological antireductionism could be supported.  相似文献   

5.
Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes and animal traits are not yet frequently used. This paper aims to explain what systems biology is and which areas of animal sciences could benefit from systems biology approaches. Systems biology aims to understand whole biological systems working as a unit, rather than investigating their individual components. Therefore, systems biology can be considered a holistic approach, as opposed to reductionism. The recently developed 'omics' technologies enable biological sciences to characterize the molecular components of life with ever increasing speed, yielding vast amounts of data. However, biological functions do not follow from the simple addition of the properties of system components, but rather arise from the dynamic interactions of these components. Systems biology combines statistics, bioinformatics and mathematical modeling to integrate and analyze large amounts of data in order to extract a better understanding of the biology from these huge data sets and to predict the behavior of biological systems. A 'system' approach and mathematical modeling in biological sciences are not new in itself, as they were used in biochemistry, physiology and genetics long before the name systems biology was coined. However, the present combination of mass biological data and of computational and modeling tools is unprecedented and truly represents a major paradigm shift in biology. Significant advances have been made using systems biology approaches, especially in the field of bacterial and eukaryotic cells and in human medicine. Similarly, progress is being made with 'system approaches' in animal sciences, providing exciting opportunities to predict and modulate animal traits.  相似文献   

6.
大数据时代土壤微生物地理学研究综述   总被引:2,自引:1,他引:1  
靳一丹  陆雅海 《生态学报》2022,42(13):5152-5164
土壤蕴含极为丰富的微生物多样性,它们在物质分解、元素生物地球化学循环、植物生产力和生物健康中扮演着关键角色。理解土壤微生物的生物地理分布格局、形成机制与群落构建规则,有助于预测在全球变化背景下土壤微生物组的功能演变及其对陆地生态系统的调控影响。自21世纪以来,土壤微生物生物地理学在各种大型国际微生物计划的推动下逐步形成了分子生物学技术耦合大数据分析的模式,实现了多种尺度上的关联研究。阐述了土壤微生物在分布格局和群落构建规则方面的研究进展,重点介绍了分子生物学技术和大数据分析在土壤微生物生物地理研究中的应用,对土壤微生物生物地理学未来在微生物分类分辨率、模型验证与构建和功能基因地理学的发展方向进行了展望。  相似文献   

7.
Understanding biological functions through molecular networks   总被引:3,自引:0,他引:3  
Han JD 《Cell research》2008,18(2):224-237
The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future.  相似文献   

8.
Molecular phylogeny   总被引:1,自引:0,他引:1  
The avalanche of molecular sequence data from a wide variety of organisms and genes makes the construction and testing of evolutionary trees a widespread and demanding activity. We present the most recent advances in the interpretation of molecular data, as well as recent phylogenetic results affecting both molecular evolutionary biology and other areas of biological research.  相似文献   

9.
The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology ‘revolutionizes’ molecular biology and ‘transcends’ its assumed reductionism. The strength of this claim appears to depend on how molecular and systems biology are characterised and on how reductionism is interpreted. Doing credit to molecular biology and to methodological reductionism, it is argued that the distinction between molecular and systems biology is gradual rather than sharp. As such, the classical challenge in biology to manage, interpret and integrate biological data into functional wholes is further intensified by systems biology’s use of modelling and bioinformatics, and by its scale enlargement.  相似文献   

10.
PROPHET is a national computing resource tailored to meet the data management and analysis needs of life scientists working in a wide variety of disciplines, ranging from pharmacology to molecular biology. The PROPHET system offers a fully integrated graphics-oriented environment designed for the manipulation and analysis of tabular data, graphs, molecular structures, biological simulation models, and protein and nucleic acid sequences, and it includes access to molecular structure and sequence databases.  相似文献   

11.
Summary Molecular biology conferred enormous progresses in biosciences during the past few years. This paradigm permutation in biological research certainly challenges biological education. Nevertheless, this is no reason to fundamentally reorganise biological education at the universities. A most entire view of the matter should remain a central request which meets the capacity and imagination of students. Selected biological phenomena taken from the traditional treasury remain suitable in the future too to mediate basic biological ways ot thinking. Forthcoming syllabuses, however, will necessitate the expansion of this concept. The scope of the present contribution is to show, how the integration of molecular biology in the teaching of classical disciplines of biology may be reached. Choosing ecology and environmental biology as examples, molecular biology will not only strengthen explanation models of cause-effect relationships in these disciplines, but also will facilitate the interconnections to interdisciplinary fields such as health education, social, and political education. This may result in an entire structural concept of classical and molecular biology.  相似文献   

12.
合成生物学是一门21世纪生物学的新兴学科,它着眼生物科学与工程科学的结合,把生物系统当作工程系统"从下往上"进行处理,由"单元"(unit)到"部件"(device)再到"系统"(system)来设计,修改和组装细胞构件及生物系统.合成生物学是分子和细胞生物学、进化系统学、生物化学、信息学、数学、计算机和工程等多学科交叉的产物.目前研究应用包括两个主要方面:一是通过对现有的、天然存在的生物系统进行重新设计和改造,修改已存在的生物系统,使该系统增添新的功能.二是通过设计和构建新的生物零件、组件和系统,创造自然界中尚不存在的人工生命系统.合成生物学作为一门建立在基因组方法之上的学科,主要强调对创造人工生命形态的计算生物学与实验生物学的协同整合.必须强调的是,用来构建生命系统新结构、产生新功能所使用的组件单元既可以是基因、核酸等生物组件,也可以是化学的、机械的和物理的元件.本文跟踪合成生物学研究及应用,对其在DNA水平编程、分子修饰、代谢途径、调控网络和工业生物技术等方面的进展进行综述.  相似文献   

13.
GATHER: a systems approach to interpreting genomic signatures   总被引:1,自引:0,他引:1  
MOTIVATION: Understanding the full meaning of the biology captured in molecular profiles, within the context of the entire biological system, cannot be achieved with a simple examination of the individual genes in the signature. To facilitate such an understanding, we have developed GATHER, a tool that integrates various forms of available data to elucidate biological context within molecular signatures produced from high-throughput post-genomic assays. RESULTS: Analyzing the Rb/E2F tumor suppressor pathway, we show that GATHER identifies critical features of the pathway. We further show that GATHER identifies common biology in a series of otherwise unrelated gene expression signatures that each predict breast cancer outcome. We quantify the performance of GATHER and find that it successfully predicts 90% of the functions over a broad range of gene groups. We believe that GATHER provides an essential tool for extracting the full value from molecular signatures generated from genome-scale analyses. AVAILABILITY: GATHER is available at http://gather.genome.duke.edu/  相似文献   

14.
Using biological machinery to make new, functional molecules is an exciting area in chemical biology. Complex molecules containing both 'natural' and 'unnatural' components are made by processes ranging from enzymatic catalysis to the combination of molecular biology with chemical tools. Here, we discuss applying this approach to the next level of biological complexity -- building synthetic, functional biotic systems by manipulating biological machinery responsible for development of multicellular organisms. We describe recent advances enabling this approach, including first, recent developmental biology progress unraveling the pathways and molecules involved in development and pattern formation; second, emergence of microfluidic tools for delivering stimuli to a developing organism with exceptional control in space and time; third, the development of molecular and synthetic biology toolsets for redesigning or de novo engineering of signaling networks; and fourth, biological systems that are especially amendable to this approach.  相似文献   

15.
Knowledge on interactions between molecules in living cells is indispensable for theoretical analysis and practical applications in modern genomics and molecular biology. Building such networks relies on the assumption that the correct molecular interactions are known or can be identified by reading a few research articles. However, this assumption does not necessarily hold, as truth is rather an emerging property based on many potentially conflicting facts. This paper explores the processes of knowledge generation and publishing in the molecular biology literature using modelling and analysis of real molecular interaction data. The data analysed in this article were automatically extracted from 50000 research articles in molecular biology using a computer system called GeneWays containing a natural language processing module. The paper indicates that truthfulness of statements is associated in the minds of scientists with the relative importance (connectedness) of substances under study, revealing a potential selection bias in the reporting of research results. Aiming at understanding the statistical properties of the life cycle of biological facts reported in research articles, we formulate a stochastic model describing generation and propagation of knowledge about molecular interactions through scientific publications. We hope that in the future such a model can be useful for automatically producing consensus views of molecular interaction data.  相似文献   

16.
Fluorescent nanoparticles (FNPs) have been widely used in chemistry and medicine for decades, but their employment in biology is relatively recent. Past reviews on FNPs have focused on chemical, physical or medical uses, making the extrapolation to biological applications difficult. In biology, FNPs have largely been used for biosensing and molecular tracking. However, concerns over toxicity in early types of FNPs, such as cadmium-containing quantum dots (QDs), may have prevented wide adoption. Recent developments, especially in non-Cd-containing FNPs, have alleviated toxicity problems, facilitating the use of FNPs for addressing ecological, physiological and molecule-level processes in biological research. Standardised protocols from synthesis to application and interdisciplinary approaches are critical for establishing FNPs in the biologists’ tool kit. Here, we present an introduction to FNPs, summarise their use in biological applications, and discuss technical issues such as data reliability and biocompatibility. We assess whether biological research can benefit from FNPs and suggest ways in which FNPs can be applied to answer questions in biology. We conclude that FNPs have a great potential for studying various biological processes, especially tracking, sensing and imaging in physiology and ecology.  相似文献   

17.
Age is the strongest risk factor for many diseases including neurodegenerative disorders, coronary heart disease, type 2 diabetes and cancer. Due to increasing life expectancy and low birth rates, the incidence of age‐related diseases is increasing in industrialized countries. Therefore, understanding the relationship between diseases and aging and facilitating healthy aging are major goals in medical research. In the last decades, the dimension of biological data has drastically increased with high‐throughput technologies now measuring thousands of (epi) genetic, expression and metabolic variables. The most common and so far successful approach to the analysis of these data is the so‐called reductionist approach. It consists of separately testing each variable for association with the phenotype of interest such as age or age‐related disease. However, a large portion of the observed phenotypic variance remains unexplained and a comprehensive understanding of most complex phenotypes is lacking. Systems biology aims to integrate data from different experiments to gain an understanding of the system as a whole rather than focusing on individual factors. It thus allows deeper insights into the mechanisms of complex traits, which are caused by the joint influence of several, interacting changes in the biological system. In this review, we look at the current progress of applying omics technologies to identify biomarkers of aging. We then survey existing systems biology approaches that allow for an integration of different types of data and highlight the need for further developments in this area to improve epidemiologic investigations.  相似文献   

18.
19.
EBI databases and services   总被引:2,自引:0,他引:2  
The EMBL Outstation-European Bioinformatics Institute (EBI) is a center for research and services in bioinformatics. It serves researchers in molecular biology, genetics, medicine, and agriculture from academia, and the agricultural, biotechnology, chemical, and pharmaceutical industries. The Institute manages and makes available databases of biological data including nucleic acid, protein sequences, and macromolecular structures. It provides to this community bioinformatics services relevant to molecular biology free of charge over the Internet. Some of these databases and services are described in this review. For more information, visit the EBI Web server at http://www.ebi.ac.uk/.  相似文献   

20.
Following the widespread use of genome-wide association studies to elucidate the genetic architectures of complex phenotypes, there has been a push to augment existing observational studies with additional layers of molecular information. The resulting high-dimensional data have led the emergence of research in integrative systems biology. Here, we examine recent progress in characterizing biological networks as well as the corresponding conceptual and analytical challenges. Using examples from metabolomics, we contend that integrative systems biology should prompt a re-examination of conventional phenotypic measures where heterogeneous or correlated phenotypes can be fine-mapped. Although still in its infancy, it is apparent that the large-scale characterization of molecular systems will transform our understanding of phenotype, biology and pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号