首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A method is described for the analysis of [3H]-thymidine incorporation in microtitre cultures of bone marrow-derived mouse macrophage responding to macrophage colony-stimulating factor (CSF-1). [3H]-thymidine incorporation depends on cell density, culture medium, and the concentration of CSF-1 and serum, but is independent of Ca2+. Bone marrow-derived macrophages are strongly adherent, but adherence can be dissociated from [3H]-thymidine incorporation.  相似文献   

2.
The binding and mitogenic properties of thrombin have been established in various transformed cell lines. In such systems, thrombin induces cell division in the absence of exogenous growth factors, and the enzyme is considered to act directly as a mitogen. This study explores thrombin's interaction with nontransformed, growth factor-dependent cells. Binding of 125I-alpha-thrombin to colony-stimulating factor (CSF)-1-dependent bone marrow-derived macrophages is saturable, time-dependent, and displaceable by both unlabeled alpha-thrombin, and esterolytically inactive thrombin. Both dissociation studies of pre-bound radio-labeled thrombin and Scatchard analysis assisted by the program "Ligand" suggest adherence of thrombin-binding data to a multi-site model. There are an estimated 2 x 10(4) high affinity sites (Kd = 7 x 10(-9)M) and 2 x 10(6) low affinity sites (Kd = 9 x 10(-7)M) per cell. Quiescent bone marrow-derived macrophages were cultured with either 10(-8)M thrombin, 1000 units of CSF-1/ml, or both and [3H]thymidine incorporation was determined. Thrombin alone did not induce mitogenesis. CSF-1 induced mitogenesis with peak [3H] thymidine incorporation occurring 24 h after addition of the mitogen. This CSF-1-dependent mitogenic influence was enhanced greater than 2-fold by treatment with thrombin.  相似文献   

3.
Gamma interferon (IFN-gamma) has long been known as an antiproliferative cytokine. The mechanism of its action, however, remains elusive. Monocytes and macrophages are primary targets of IFN-gamma. To understand the antiproliferative signaling of IFNgamma, we studied the effect of IFNgamma on expression of c-Myc, Mad1, Max, cyclin D1, and cyclin D2 genes in both a macrophage cell line and in primary bone marrow-derived macrophages (BMM) in response to colony-stimulating factor-1 (CSF-1). We found that whereas IFNgamma inhibits CSF-1-stimulated c-Myc gene expression, it induces Mad1 expression. Induction of Mad1 mRNA could be detected as early as 90 min following IFNgamma treatment and was maintained for at least 15 h. These results suggest that IFNgamma treatment could shift the Myc-Max complex to the Mad1-Max complex in cells. The levels of Max, cyclin D1, and cyclin D2, however, remained unchanged. Enforced ectopic expression of Mad1 in the cells results in inhibition of [3H]thymidine incorporation and proliferation in response to CSF-1. This study suggests a mechanism by which IFNgamma inhibits CSF-1-stimulated proliferation of macrophages, i.e., by elevating the Mad1 level in the cells.  相似文献   

4.
5.
6.
The effects of prostaglandin E2 (PGE2) were examined in a murine macrophage cell line (BAC1.2F5) that was completely dependent on colony-stimulating factor-1 (CSF-1) for both growth and survival. The addition of PGE2 to cultures of BAC1.2F5 cells resulted in the inhibition of CSF-1-induced [3H]thymidine incorporation and cell proliferation. The inhibitory effects of PGE2 were mimicked by the addition of dibutyryl-cyclic AMP, and the effectiveness of PGE2 was markedly potentiated by 1-methyl-3-isobutylxanthine, a potent inhibitor of cyclic nucleotide phosphodiesterase activity. PGE2 caused a 10-fold elevation of the intracellular cyclic AMP concentration, whereas CSF-1 neither increased cyclic AMP levels nor attenuated the rise in cyclic AMP promoted by PGE2. However, CSF-1 may indirectly regulate cyclic AMP levels since in the absence of CSF-1, BAC1.2F5 cells actively synthesized PGE2, whereas PGE2 production was abruptly terminated by the addition of CSF-1. In BAC1.2F5 cells, PGE2 increases the intracellular cyclic AMP concentration, thereby blocking cell proliferation, but does not down-regulate the CSF-1 receptor or abrogate the functions of CSF-1 necessary for cell survival.  相似文献   

7.
The phorbol ester 12-O-tetradecanoylphorbol 13-acetate induces tumour promotion, inflammation, cell proliferation and prostaglandin release. Recent reports suggest that the prostaglandins released by 12-O-tetradecanoylphorbol 13-acetate (TPA) initiate a cascade of events leading to polyamine synthesis and cell proliferation. In experiments designed to test this contention, it was found that addition of TPA (1 microM to 1 nM) to confluent mouse 3T3 fibroblasts successively caused the release of prostaglandins E2 and I2, induction of the enzyme ornithine decarboxylase (EC 4.1.1.17), stimulation of [3H]thymidine incorporation into DNA, and cell proliferation. Pretreatment of the cells with the anti-inflammatory steroid dexamethasone (1 microM) or the non-steroidal anti-inflammatory drug indomethacin (1 microM) inhibited TPA-induced prostaglandin release. However, dexamethasone enhanced the other effects of TPA, whereas indomethacin was ineffective. Addition of prostaglandin E2 to the cultures did not induce ornithine decarboxylase activity and cell proliferation. Pretreatment of the cells with 1,3-diaminopropane (1 mM) or alpha-methylornithine (5 mM), inhibitors of polyamine synthesis, decreased TPA-induced ornithine decarboxylase activity without affecting DNA synthesis. TPA stimulated [3H]thymidine incorporation into DNA, even when the ornithine decarboxylase activity was completely blocked. These data suggest that the proliferative effect of TPA on 3T3 cells is independent of prostaglandin release and polyamine synthesis.  相似文献   

8.
Unmethylated CpG motifs within bacterial DNA constitute a pathogen-associated molecular pattern recognized by the innate immune system. Many of the immunomodulatory functions of bacterial DNA can be ascribed to the ability to activate macrophages and dendritic cells. Here we show stimulatory DNA, like LPS, caused growth arrest of murine bone marrow-derived macrophages proliferating in CSF-1. Stimulatory DNA caused selective down-modulation of CSF-1 receptor surface expression. Flow cytometric analysis of CSF-1-deprived bone marrow-derived macrophages revealed that in contrast to the synchronous reduction of CSF-1 receptor upon CSF-1 addition, activating DNA (both bacterial DNA and CpG-containing oligonucleotide) caused rapid removal of receptor from individual cells leading to a bimodal distribution of surface expression at intermediate times or submaximal doses of stimulus. Despite causing growth arrest, both stimulatory DNA and LPS promoted factor-independent survival of bone marrow-derived macrophages, which was associated with phosphorylation of the mitogen-activated protein kinase family members, extracellular-regulated kinase 1 and 2. CSF-1 receptor down-modulation may polarize the professional APC compartment to the more immunostimulatory dendritic cell-like phenotype by suppressing terminal macrophage differentiation mediated by CSF-1.  相似文献   

9.
Guinea pig peritoneal exudate macrophages actively incorporated [3H]thymidine into trichloroacetic acid-insoluble fraction in vitro. The incorporation of [3H]thymidine was almost completely inhibited by aphidicolin, an inhibitor of DNA polymerase alpha and an autoradiograph showed heavy labeling in nuclei of 15% of macrophage populations. These results indicate that the observed thymidine incorporation was due to a nuclear DNA synthesis. The [3H]thymidine incorporation was markedly suppressed when macrophages were activated by immunoadjuvants such as muramyl dipeptide (MDP) or bacterial lipopolysaccharide (LPS). The suppression of [3H]thymidine incorporation by MDP was neither due to the decrease in thymidine transport through the cell membrane, nor due to dilution by newly synthesized "cold" thymidine. An autoradiograph revealed that MDP markedly decreased the number of macrophages the nuclei of which were labeled by [3H]thymidine. These results suggest that the suppression of [3H]thymidine incorporation by the immunoadjuvants reflects a true inhibition of DNA synthesis. The inhibition of DNA synthesis by MDP was also observed in vivo. Further, it was strongly suggested that the inhibition was not caused by some mediators, such as prostaglandin E2, released from macrophages stimulated by the immunoadjuvants but caused by a direct triggering of the adjuvants at least at the early stage of activation. Cyclic AMP appears to be involved in the inhibitory reaction.  相似文献   

10.
Colony stimulating factor-1 (CSF-1) stimulates DNA synthesis in quiescent murine bone marrow-derived macrophages (BMM). CSF-1 action has been shown to involve activation of the CSF-1 receptor kinase. The protein kinase C activator, 12-O-tetradecanoylphorbol 13-acetate (PMA), is itself weakly mitogenic and synergises with CSF-1 for stimulation of BMM DNA synthesis suggesting a possible role for protein kinase C in the stimulation of BMM DNA synthesis. In this report we show that several agents which raise intracellular cAMP (8-bromoadenosine 3':5'-cyclic monophosphate, 3-isobutyl-1-methylxanthine, cholera toxin, and prostaglandin E2) reversibly inhibit DNA synthesis in BMM induced by CSF-1, granulocyte macrophage-colony stimulating factor, interleukin-3, and PMA. The suppressive action of cAMP elevation on the proliferative response to CSF-1 can be manifested even late in the G1 phase of the cell cycle. Several CSF-1-stimulated earlier responses, viz. protein synthesis, Na+/H+ exchange, Na+,K(+)-ATPase and c-myc-mRNA expression, were not inhibited thus showing a striking difference from some other cellular systems involving growth factor-mediated responses. c-fos-mRNA levels were raised and stabilized by the cAMP-elevating agents, and this modulation was not altered by CSF-1. Thus, the signaling pathways in the macrophages involving tyrosine kinase and protein kinase C activation are associated with increased proliferation while those involving elevation of cAMP (and presumably activation of cAMP-dependent protein kinases) appear to have an inhibitory effect.  相似文献   

11.
Colony stimulating factor-1 (CSF-1) stimulates DNA synthesis in murine bone marrow-derived macrophages (BMM); however, unlike BMM, murine resident peritoneal macrophages (RPM) undergo a poor proliferative response. It has previously been shown that phosphatidylinositol-4,5-bisphosphate hydrolysis is not associated with CSF-1 action in BMM. In this report we demonstrate that, despite a lack of inositol trisphosphate generation, CSF-1 transiently elevated both [3H]myristoyl- and [3H]arachidonyl-diacylglycerol (DAG) in BMM in a dose-dependent fashion. CSF-1 failed, however, to stimulate an increase in either species of DAG in RPM. Thus, DAG could be a second messenger for the proliferative action of CSF-1 in macrophages. Other mitogenic agents, 12-0-tetradecanoyl phorbol 13-acetate (TPA) and exogenous phospholipase C, also increased BMM levels of [3H]myristoyl- and [3H]arachidonyl-DAG. The nonmitogenic agents, lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-alpha) and zymosan, had different effects on the generation of either species of DAG in BMM. LPS failed to elevate either form, TNF-alpha increased only [3H]arachidonyl-DAG, while zymosan stimulated levels of both species of DAG. It therefore appears that increased diacylglycerol generation may be necessary, but perhaps not sufficient, for macrophage proliferation.  相似文献   

12.
《The Journal of cell biology》1983,97(4):1113-1118
A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. We have defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few cells contained intracellular immunoreactive ApoE, and little, if any, ApoE was secreted. ApoE secretion was initiated at 9 d, and this correlated with an increase in the percentage of macrophages containing intracellular ApoE. The onset of ApoE secretion was selective, and little change occurred in the other major secreted proteins detected by [35S]methionine incorporation. In parallel, the high rate of plasminogen activator secretion, which peaked at 7 d, decreased markedly. ApoE secretion was not associated with altered expression of the macrophage surface antigen, Ia, or with secretion of fibronectin. Virtually all cells in independent colonies of bone marrow- derived macrophages eventually expressed ApoE. The proliferating monocyte/macrophage-like cell lines P388D1, J774.2, WEHI-3, RAW 264.1, and MGI.D+ secreted little or no ApoE. These data establish that ApoE secretion is developmentally regulated.  相似文献   

13.
To investigate the role of specific cytokines in the development of the fully mature macrophage, we have employed murine bone marrow cells that were grown in the presence of CSF-1, a colony-stimulating factor that has been shown to induce the proliferation and differentiation of macrophages from their precursor cells. The CSF-1 employed in these studies was partially purified to ensure removal of contaminating interferon (IFN) from the preparations. After 1 to 2 wk in the presence of the partially purified CSF-1, the adherent macrophages were removed from flasks enzymatically and were recultured at known densities in the absence of CSF-1. Cell surface antigens (Mac-1 and Ia) and Fc receptor capacity (as assessed by Fc-mediated phagocytosis) were examined as markers of macrophage differentiation. Basal levels of Fc receptor capacity and Mac-1 antigen were markedly influenced by exposure to CSF-1, and appear to be modulated by CSF-induced, macrophage-derived IFN. When the bone marrow-derived macrophages were exposed to exogenous IFN in the absence of CSF-1, they proved to be extremely inducible with respect to Fc-mediated phagocytosis (IFN-beta and rIFN-gamma) and Ia antigen expression (rIFN-gamma) when compared with thioglycollate-elicited macrophages. Thus, macrophage growth factors, such as CSF-1, promote macrophage maturation by inducing the production of autostimulatory signals, such as macrophage-derived IFN. In addition, exogenous cytokine stimuli, such as IFN-gamma, further amplify the differentiative potential of these cells. Bone marrow-derived macrophages, propagated under well-defined conditions and never exposed to eliciting agents, provide a powerful model for studying the role of cytokines, such as CSF-1 and IFN, in the differentiative pathway of macrophages.  相似文献   

14.
Apart from its characteristic antiviral activity, interferon (IFN) also exerts a variety of biologic effects on macrophages. We have studied the effect of IFN on the expression of the colony-stimulating factor receptors (CSF-1 receptors) by murine peritoneal exudate macrophages (PEM). At 37 degrees C, murine IFN decreased the expression of the CSF-1 receptor activity in a time- and dose-dependent fashion by PEM from both endotoxin-sensitive (C3H/Sn) and endotoxin-resistant strains (C3H/HeJ) of mice. Scatchard analysis from the binding data suggests that the decreased expression of CSF-1 receptors is a result of decreased number of receptors rather than a decreased binding affinity. When IFN was incubated with anti-IFN before the addition to cultures, the effect was completely abolished indicating that this activity resides in the same molecules as IFN. The suppressed CSF-1 receptor activity on PEM by IFN appeared to be stable. Removal of added IFN never resulted in a full recovery of CSF-1 binding activity by PEM even after prolonged incubation (7 days). IFN also inhibited the receptor-mediated uptake and utilization of CSF-1 molecules by treated cells, which appeared to be a direct effect of the decreased number of CSF-1 receptors. Treatment of PEM with dexamethasone, prostaglandin, transferrin, insulin, or dibutyryl cAMP failed to suppress both the expression of CSF-1 receptors and CSF-1 utilization by PEM. These studies suggest that IFN may play a role in the regulation of both macrophage production and differentiation via the modulation of specific membrane receptors and inhibition of receptor-mediated CSF-1 endocytosis.  相似文献   

15.
Colony-stimulating factor-1 receptor (c-fms)   总被引:2,自引:0,他引:2  
The macrophage colony-stimulating factor, CSF-1 (M-CSF), is a homodimeric glycoprotein required for the lineage-specific growth of cells of the mononuclear phagocyte series. Apart from its role in stimulating the proliferation of bone marrow-derived precursors of monocytes and macrophages, CSF-1 acts as a survival factor and primes mature macrophages to carry out differentiated functions. Each of the actions of CSF-1 are mediated through its binding to a single class of high-affinity receptors expressed on monocytes, macrophages, and their committed progenitors. The CSF-1 receptor (CSF-1R) is encoded by the c-fms proto-oncogene, and is one of a family of growth factor receptors that exhibits an intrinsic tyrosine-specific protein kinase activity. Transduction of c-fms sequences as a viral oncogene (v-fms) in the McDonough (SM) and HZ-5 strains of feline sarcoma virus has resulted in alterations in receptor coding sequences that affect its activity as a tyrosine kinase and provide persistent signals for cell growth in the absence of its ligand. The genetic alterations in the c-fms gene that unmask its latent transforming potential abrogate its lineage-specific activity and enable v-fms to transform a variety of cells that do not normally express CSF-1 receptors.  相似文献   

16.
In murine bone marrow-derived macrophages, prelabeled with either [3H]myristic acid or [3H]arachidonic acid, the mitogenic colony stimulating factors GM-CSF and IL-3 stimulated a transient increase in [3H]diacylglycerol generation. Maximum [3H]diacylglycerol levels were detected at 10-15 min. The stimulation of [3H]diacylglycerol generation was dependent on the concentration of CSF and correlated with their ability to activate a variety of processes in the macrophage, including DNA synthesis. This is the first report to demonstrate that GM-CSF elevates diacylglycerol levels in macrophages and also to show that diacylglycerol generation may be an important signaling mechanism for IL-3 action. In conjunction with our recent demonstration that the mitogenic agents CSF-1, 12-0-tetradecanoylphorbol-13-acetate and exogenous phospholipase C also stimulate diacylglycerol generation in the macrophage (Veis and Hamilton, J.Cell.Physiol., 147, 298-305, 1991), our findings suggest that an increase in diacylglycerol levels is necessary but not sufficient for macrophage proliferation.  相似文献   

17.
In our studies of the growth-promoting effect of a cytokine, interleukin-1 (IL-1), on cultured porcine granulosa cells, we found that the potency of IL-1 action correlated with the serum concentration in the culture medium and that IL-1 acted synergistically with insulin to increase the number of cells in the presence of low serum concentrations (0.1-1%). With granulosa cells maintained in a quiescent state under serum-free conditions, we therefore examined the effects of combined treatment with IL-1 and peptide growth factors, including insulin, on [3H]thymidine incorporation by these cells. IL-1 by itself enhanced [3H]thymidine incorporation in a concentration-dependent manner. Moreover, IL-1 acted synergistically with insulin, epidermal growth factor (EGF), or fibroblast growth factor (FGF) to enhance [3H]thymidine incorporation. Combinations of maximally effective concentrations of insulin (1 micrograms/ml), EGF (1 ng/ml), or FGF (50 ng/ml) with the maximally effective concentration of IL-1 (10 ng/ml) increased the levels of [3H]thymidine incorporation to 10-, 22-, and 20-fold, respectively, over the control values. Whereas IL-2 (0.1-100 ng/ml) did not affect [3H]thymidine incorporation, tumor necrosis factor alpha (TNF alpha) stimulated [3H]thymidine incorporation by itself and reproduced the actions of IL-1 to act synergistically with insulin, EGF, or FGF. When IL-1 and TNF alpha were added together in relatively low concentrations (1 ng/ml each), the combination had synergistic effects in enhancing [3H]thymidine incorporation. The present study demonstrates that cytokines and peptide growth factors act synergistically to markedly enhance porcine granulosa cell growth in vitro.  相似文献   

18.
Metabolic labeling of simian virus 40-immortalized murine macrophages with 32Pi and immunoblotting with antibodies to phosphotyrosine demonstrated that the c-fms proto-oncogene product (colony-stimulating factor 1 [CSF-1] receptor) was phosphorylated on tyrosine in vivo and rapidly degraded in response to CSF-1. Stimulation of the CSF-1 receptor also induced immediate phosphorylation of several other cellular proteins on tyrosine. By contrast, the mature cell surface glycoprotein encoded by the v-fms oncogene was phosphorylated on tyrosine in the absence of CSF-1, suggesting that it functions as a ligand-independent kinase.  相似文献   

19.
20.
Insulin-like growth factor I (IGF-I) is anabolic for chondrocytes and is thought to be important in regulating such normal cartilaginous tissues as the epiphyseal growth plate. In the present studies, we have investigated the role of IGF-I in the regulation of neoplastic cartilage. Chondrocytes cultured from a transplantable rat chondrosarcoma were analyzed for responsiveness to IGF-I with respect to DNA and glycosaminoglycan synthesis as determined by labeling with radioactive thymidine and sulfate, respectively. Stimulation of [3H]thymidine and [35S]sulfate incorporation by IGF-I was two to four times that in serum-free controls, with half-maximal stimulation at 1 × 10-9M. The efficacy of IGF-I was approximately one-half of that of serum in stimulating [3H]thymidine incorporation and was comparable to that of serum for [35S]sulfate incorporation. When Swarm rat chondrosarcoma chondrocytes were cultured in the presence of IGF-I and exposed to graded concentrations of anti-IGF-I antibody, [3H]thymidine incorporation and [35S]sulfate incorporation were attenuated in a dose-dependent fashion to 29 and 25% of antibody-free controls, respectively. Nonspecific antibody not raised against IGF-I was not inhibitory. These observations suggest that the majority of IGF-I action on these cells is susceptible to immunoinhibition. To estimate the contribution of IGF-I to the regulation of these cells by serum, Swarm rat chondrosarcoma chondrocytes were cultured with graded concentrations of either calf serum or fetal calf serum in the presence of anti-IGF-I antibody, nonspecific antibody, or no other additives. Specific antibody attenuated the effect of calf serum on both [3H]thymidine and [35S]sulfate incorporation with overall inhibition of 52% (P < 0.01) and 48% (P < 0.001), respectively. Nonspecific antibody superimposed small, variably stimulatory or inhibitory effects on those of calf serum. When chondrosarcoma chondrocytes were incubated with fetal calf serum, anti-IGF-I antibody exerted a minimal inhibitory effect, reducing both [3H]thymidine and [35S]sulfate incorporation by less than 25%. The immunoinhibition of both pre- and postnatal serum could be overcome in a dose-dependent fashion by increasing serum concentrations. These results suggest that the factors influencing Swarm rat chondrosarcoma chondrocytes may be developmentally regulated and that the contribution of IGF-I to the action of serum increases between fetal and postnatal life. These data support the hypothesis that chondrosarcoma is a somatomedin-responsive neoplasm and suggest that this tumor may be susceptible to interventions directed toward mechanisms that block insulin-like growth factor action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号