首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The marine phytoplankton, Karenia mikimotoi, causes severe red tides which are associated with mass mortality of marine fish, and have expanded their distributions in the coastal waters of western Japan. To assess the dispersal mechanism, a population genetic study using highly polymorphic genetic markers is one of the crucial approaches. Here we developed 12 polymorphic microsatellite markers from K. mikimotoi. These loci provide a class of highly variable genetic markers, as the number of alleles ranged from 5 to 23, and the estimate of gene diversity was from 0.551 to 0.933 across the 12 microsatellites. We consider these loci potentially useful for detailing the genetic structure and gene flow among K. mikimotoi populations.  相似文献   

2.
A massive outbreak of Karenia brevis that had been ongoing for several months along the southwestern coast of Florida was sampled in early September 2005 off Sanibel Island to assess the utility of bio-optical features and ataxonomic analysis (quantification of eukaryotic and cyanobacterial picoplankton) by flow cytometry in monitoring red tide blooms. Sea-surface sampling followed aircraft visual location of discolored water. Within the most concentrated area of the bloom, chlorophyll a values exceeded 500 μg l−1, and concentrations of nitrate (0.3 μM ± 0.0) and ammonium (<0.2 μM) were depleted compared to high concentrations of total dissolved nitrogen, total dissolved phosphorus, and soluble reactive phosphorus (141 ± 34 μM, 16.5 ± 2.5 μM, and 6.44 ± 0.57 μM, respectively). Low water clarity in the bloom (Secchi depth transparency 0.3 m, Kd estimated at 4.83 m−1) was strongly influenced by attenuation from dinoflagellates as well as chromophoric dissolved organic matter (CDOM). The fact that the K. brevis bloom occurred in lower-salinity (30 psu), high-nutrient waters implicates riverine transport of land-based nutrients as a source of nutrient supplies that fueled or sustained the bloom. Throughout ongoing efforts to advance modeling and technological capabilities that presently lack reliable predictive capability, bio-optical remote sensing via aerial flyovers along with in-water sensor data can continue to provide accurate coverage of relatively large temporal and spatial features. Flow cytometry can provide conservative (because of some cell lysis), rapid, near-real-time validation of bloom components. The concentration and position of the organisms, along with water mass scalars, can also help to diagnose factors promoting K. brevis bloom development and dispersion.  相似文献   

3.
An algal bloom caused by the dinoflagellate Akashiwo sanguinea was observed in October–November 2009 along the central Oregon coast (44.6°N), off Newport, Oregon, U.S.A. In this paper, the conditions are described which led to the development and demise of this bloom. The bloom was observed for 1 month from 5-October until 4-November with the peak of abundance on 19-October (347,615 cells L−1). The A. sanguinea bloom followed September blooms of the diatoms Pseudo-nitzschia spp, Chaetoceros debilis, and the dinoflagellate Prorocentrum gracile. The bloom occurred when nitrate and silicate concentrations were <2 μM and <8 μM, respectively, and when the water column was stratified. This A. sanguinea dinoflagellate bloom event was closely related to the anomalous upwelling conditions in 2009: upwelling ceased early, at the end of August, whereas a normal upwelling continues into early October. This relaxation extended to near the end of September as a prolonged downwelling event, but then active upwelling reappeared in October and November. The explanation for the occurrence of the A. sanguinea bloom in October may be related to a combination of a prior diatom bloom, a stratified water column with low nutrient concentration in September, and an active upwelling event in October. As for the ultimate source of the cells, the hypothesis is that the seed stock for the A sanguinea bloom off Oregon was southward transport of cells from the Washington coast where a massive bloom of A. sanguinea was first observed in September 2009.  相似文献   

4.
Brand LE  Compton A 《Harmful algae》2007,6(2):232-252
Data collected along the southwest coast of Florida between Tampa Bay and Sanibel Island on the abundance of the toxic dinoflagellate Karenia brevis from 1954 to 2002 were examined for spatial and temporal patterns. K. brevis was found to be approximately 20-fold more abundant within 5 km of the shoreline than 20–30 km offshore. Overall, K. brevis was approximately 13–18-fold more abundant in 1994–2002 than in 1954–1963. In 1954–1963, K. brevis occurred primarily in the fall months. In 1994–2002, it was more abundant not only in the fall, but also in the winter and spring months. It is hypothesized that greater nutrient availability in the ecosystem is the most likely cause of this increase in K. brevis biomass, and the large increase in the human population and its activities in South Florida over the past half century is a major factor.  相似文献   

5.
The brevetoxin producing dinoflagellate, Karenia brevis, is the target of several monitoring and research programs in the Gulf of Mexico, where it forms extensive and frequently long-lived annual blooms that can cause human intoxication and fish kills, as well as severe economic losses to coastal communities. Rapid, reliable methods for the detection and enumeration of K. brevis cells, as well as their discrimination from morphologically similar species, are valuable tools for managers and scientists alike. Our aim was to produce a species-specific molecular probe that would serve as a tool to facilitate the efficient and reliable detection of K. brevis in the Gulf of Mexico. We sequenced a fragment of the large-subunit ribosomal RNA gene (LSU rDNA) from five K. brevis cultures isolated from the Texas Gulf coast, the Florida Gulf coast, and the Atlantic coast of Florida, and detected no differences among these isolates. A consensus sequence was thus compiled and compared to a previously published sequence from Karenia mikimotoi, the closest known phylogenetic relative to K. brevis, for the purpose of identifying unique K. brevis signature sequences. Fluorescently-labeled (FITC) oligonucleotide probes targeting these regions of the K. brevis LSU rRNA were designed to include at least two base pair differences, as compared to K. mikimotoi. Among seven probes designed, one uniquely identified all K. brevis isolates to the exclusion of all other species tested (Kbprobe-7), including a Gulf of Mexico K. mikimotoi isolate (Sarasota, FL) and several additional Gymnodinium species, as well as other dinoflagellate, diatom, and raphidophyte taxa. Importantly, K. brevis cells in samples taken during a 2001 bloom, fixed with a mixture of modified saline ethanol and 10% formalin, and stored at 4 °C for 7 months were successfully labeled with Kbprobe-7. In addition, preliminary analysis of labeled cells by flow cytometry revealed that K. brevis could be distinguished from K. mikimotoi in solution, suggesting other potential applications of this probe.  相似文献   

6.
7.
Autonomous underwater gliders with customized sensors were deployed in October 2011 on the central West Florida Shelf to measure a Karenia brevis bloom, which was captured in satellite imagery since late September 2011. Combined with in situ taxonomy data, satellite measurements, and numerical circulation models, the glider measurements provided information on the three-dimensional structure of the bloom. Temperature, salinity, fluorescence of colored dissolved organic matter (CDOM) and chlorophyll-a, particulate backscattering coefficient, and K. brevis-specific chlorophyll-a concentrations were measured by the gliders over >250 km from the surface to about 30-m water depth on the shallow shelf. At the time of sampling the bloom was characterized by uniform vertical structures, with relatively high chlorophyll-a and CDOM fluorescence, low temperature, and high salinity. Satellite data extracted along the glider tracks demonstrated coherent spatial variations as observed by the gliders. Further, the synoptic satellite observations revealed the bloom evolution during the 7 months between late September 2011 and mid April 2012, and showed the maximum bloom size of ∼3000 km2 around 23 November. The combined satellite and in situ data also confirmed that the ratio of satellite-derived fluorescence line height (FLH) to particulate backscattering coefficient at 547 nm (bbp(547)) could be used as a better index than FLH alone to detect K. brevis blooms. Numerical circulation models further suggested that the bloom could have been initiated offshore and advected onshore via the bottom Ekman layer. The case study here demonstrates the unique value of an integrated coastal ocean observing system in studying harmful algal blooms (HABs).  相似文献   

8.
The toxic dinoflagellate Karenia mikimotoi has been well-known for causing large-scale and dense harmful algal blooms (HABs) in coastal waters worldwide and serious economic loss in aquaculture and fisheries and other adverse effects on marine ecosystems. Whether K. mikimotoi forms resting cysts has been a puzzling issue regarding to the mechanisms of bloom initiation and geographic expansion of this species. We provide morphological and molecular confirmation of sexually produced thin-walled resting cysts by K. mikimotoi based on observations of laboratory cultures and their direct detection in marine sediments. Light and scanning electron microscopy evidences for sexual reproduction include attraction and pairing of gametes, gamete fusion, formation of planozygote and thin-walled cyst, and the documentation of the thin-walled cyst germination processes. Evidence for cysts in marine sediments was in three aspects: positive PCR detection of cysts using species-specific primers in the DNA extracted from whole sediments; fluorescence in situ hybridization detection of cysts using FISH probes; and single-cell PCR sequencing for cysts positively labeled with FISH probes. The existence of sexually produced, thin-walled resting cysts by K. mikimotoi provides a possible mechanism accounting for the initiation of annually recurring blooms at certain regions and global expansion of the species during the past decades.  相似文献   

9.
For the first time, several models have been used to aid in the understanding of the bloom dynamics of Pyrodinium bahamense var. compressum, the major causal organism of toxic algal blooms in Manila Bay and several areas in the tropical world. The complex life cycle of Pyrodinium includes the formation of cysts that settle at the sediments, which can serve as the inoculum for the next bloom.The seasonal variation of temperature and salinity reflects the combined effects of convection and water column stability, which can control vertical movement of plankton and other parameters essential to its growth. The significance of wind forcing appears to be related to the potential to resuspend cysts. In the absence of wind, tidal currents in the inner part of the bay may be too weak to induce resuspension. The addition of wind results in a significant increase in bottom current velocity. Off Cavite at the southeast, bottom velocity is enhanced by orbital motion due to waves, one of the reasons why sediments off this area are dominated by sandy material. The strong vertical mixing of the water column at depths of less than 10 m may influence nutrient and consequently, plankton populations.The wave field during the southwest monsoon indicates that its contribution to the bottom velocity dominates in this area of the bay.Bloom simulations using combined bio-physical parameters show that direction of advection is almost always along wind direction. The dispersal distances increases if the Pyrodinium cells are found higher in the water column. For cells originating from southeastern (Cavite) sources, the direction of transport is slightly towards the north. In either case, the formation of cysts after a bloom is adjacent to the northern area (Pampanga) for blooms originating from the western side (Bataan) and along the eastern side (Parañaque–Manila) for blooms originating from the southeastern side (Cavite). Comparison with a few records of bloom occurrences in Manila Bay shows some consistent features. Reports of these blooms also showed that they occurred almost always during spring tides. There appears to be two main systems for bloom formation: one fed by cyst beds in the west (Bataan) which is advected along the west–northwest coast (Bataan–Bulacan) while the other one is fed by the southeast (Cavite) cyst beds that dominates in the east-southeast (Parañaque–Cavite) area.  相似文献   

10.
米氏凯伦藻和东海原甲藻是我国东南沿海地区赤潮的主要优势种。为定量获取米氏凯伦藻和东海原甲藻生长的温度生态幅,根据3个光照水平(28.32,75.06,111.66μmol m~(-2)s~(-1))条件下4个温度水平(18,22,25,28℃)对米氏凯伦藻和东海原甲藻生长特性的室内培养实验结果,并结合Shelford耐受性定律建立了基于温度的米氏凯伦藻和东海原甲藻比生长率的耐受性模型,最后根据前期的研究成果分别获取了米氏凯伦藻和东海原甲藻生长的最适温度、适温范围及耐受温度范围。结果表明,无论是米氏凯伦藻还是东海原甲藻,在相同培养光照条件下,在设定的温度水平范围内,分别存在一个适宜米氏凯伦藻和东海原甲藻的最适生长温度T_(opt),且当T≤T_(opt)时,米氏凯伦藻和东海原甲藻细胞密度和比生长率随着温度的升高而显著增大;而当T≥T_(opt)时,米氏凯伦藻和东海原甲藻细胞密度和比生长率随着温度的升高而显著减小。随着培养光照强度的升高,米氏凯伦藻和东海原甲藻细胞密度和比生长率均呈现"先升后降"的变化趋势。建立的藻类生长温度耐受性模型与谢尔福德耐受定律较为吻合,定量获取米氏凯伦藻在3个光照水平(28.32,75.06,111.66μmol m~(-2)s~(-1))下的最适生长温度分别为22.48,22.37,22.33℃;适温范围分别为17.93—27.03,17.82—26.92,17.78—26.88℃;耐受温度范围分别为13.38—31.58,13.27—31.47,13.23—31.43℃;东海原甲藻在3个光照水平(28.32,75.06,111.66μmol m~(-2)s~(-1))下的最适生长温度分别为22.10,21.99,21.93℃;适温范围分别为17.59—26.61,17.48—26.5,17.42—26.44℃;耐受温度范围分别为13.08—31.12,12.97—31.01,12.91—30.95℃。  相似文献   

11.
Toxic algal blooms are common world-wide and pose a serious problem to the aquaculture and fishing industries. Dinoflagellate species such as Karenia brevis, Karenia mikimotoi, Heterosigma akashiwo and Chatonella cf. antiqua are recognised toxic species implicated in various faunal mortalities. Toxic blooms of Karenia cristata were observed on the south coast of South Africa for the first time in 1988 and were responsible for mortalities of wild and farmed abalone. K. cristata and various other dinoflagellate species common along the South African coast, as well as K. mikimotoi (Isolation site: Norway, Univ. of Copenhagen) and K. brevis (Isolation site: Florida, BIGELOW), were tested for toxicity by means of a bioassay involving Artemia larvae as well as abalone larvae and spat. K. cristata, like K. brevis, contains an aerosol toxin; however, the toxin present in K. cristata has not yet been isolated and remains unknown. K. brevis was, therefore, used to determine which developmental phase of the bloom would affect abalone farms most, and whether ozone could be used as an effective mitigating agent. Of the 17 dinoflagellate species tested, K. cristata, Akashiwo sanguinea, K. mikimotoi and K. brevis pose the greatest threat to the abalone mariculture industry. K. brevis was most toxic during its exponential and stationary phases. Results suggest that ozone is an effective mitigation agent but its economic viability for use on abalone farms must still be investigated.  相似文献   

12.
The age and growth of an Asturian population of the bib Trisopterus luscus L. were studied based on 990 bibs from monthly catches from October 1986 until October 1988.Using the estimates of age taken from otolith readings, it was possible to construct a growth curve for the whole range of ages and demonstrate that most growth takes place during the first two years of life. The maximum age was found to be 5 years. The largest fish caught during the investigation measured 430 mm in standard length.The different growth rates of males and females show that in most cases the mean standard length of females was equal to or greater than that of the males.  相似文献   

13.
A DNA hybridization assay was developed in microtiter plate format to detect the presence of toxic dinoflagellates in coastal waters. Simultaneous detection of multiple species was demonstrated using Karenia brevis, Karenia mikimotoi, and Amphidinium carterae. Molecular probes were designed to detect both K. brevis and K. mikimotoi and to distinguish between these two closely related species. The assay was used to detect K. brevis in coastal waters collected from the Rookery Bay National Estuarine Research Reserve. Assay results were verified by species-specific PCR and sequence analysis. The presence/absence of K. brevis was consistent with microscopic observation. Assay sensitivity was sufficient to detect K. brevis in amounts defined by a regional monitoring program as “present” (≤1000 cells/L). The assay yielded quick colorimetric results, used a single hybridization temperature, and conserved the amount of genomic DNA utilized by employing one set of PCR primers. The microplate assay provides a useful tool to quickly screen large sample sets for multiple target organisms.  相似文献   

14.
15.
采用实验室一次性培养,研究了尿素对我国东海赤潮优势藻中肋骨条藻(Skeletonema costatum)和米氏凯伦藻(Karenia mikimotoi)生长的影响。结果表明,中肋骨条藻和米氏凯伦藻均能在不同比例尿素的条件下较好地生长。随着培养液中尿素比例的增大,中肋骨条藻细胞生长速率(0.91—0.82/d)逐渐减小,平台期最大生物量(2.0×10~5—1.2×10~5个/m L)也逐渐减小,而米氏凯伦藻细胞的生长速率(0.36—0.51/d)逐渐增大,最大生物量基本不变(约1.1×10~4个/m L)。在平台期中肋骨条藻培养液中氮盐浓度最低下降到2.5μmol/L左右维持不变,而米氏凯伦藻氮盐浓度最低下降到1.0μmol/L左右。在指数生长期,随着细胞的生长溶解有机氮(DON,Dissolved Organic Nitrogen)含量迅速增加,中肋骨条藻介质中DON的浓度达到最大值(5—6μmol/L),然后浓度基本不变。米氏凯伦藻介质中DON在指数生长阶段达到最大值(2—3μmol/L)后开始下降。中肋骨条藻单细胞颗粒氮的含量(约为10~(-6)μmol,平台期约为10~(-7)μmol)要远远小于米氏凯伦藻(指数期约为10~(-4)μmol,平台期约为10~(-6)μmol)。研究表明,两种藻对尿素的吸收利用存在明显差异,在较低的溶解无机氮和较高的溶解有机氮环境中,甲藻有更好的适应性,该研究对于解释我国长江口春季硅藻和甲藻赤潮的演替有借鉴的意义。  相似文献   

16.
17.
In 2006, a large and prolonged bloom of the dinoflagellate Karenia mikimotoi occurred in Scottish coastal waters, causing extensive mortalities of benthic organisms including annelids and molluscs and some species of fish (Davidson et al., 2009). A coupled hydrodynamic-algal transport model was developed to track the progression of the bloom around the Scottish coast during June–September 2006 and hence investigate the processes controlling the bloom dynamics. Within this individual-based model, cells were capable of growth, mortality and phototaxis and were transported by physical processes of advection and turbulent diffusion, using current velocities extracted from operational simulations of the MRCS ocean circulation model of the North-west European continental shelf. Vertical and horizontal turbulent diffusion of cells are treated using a random walk approach. Comparison of model output with remotely sensed chlorophyll concentrations and cell counts from coastal monitoring stations indicated that it was necessary to include multiple spatially distinct seed populations of K. mikimotoi at separate locations on the shelf edge to capture the qualitative pattern of bloom transport and development. We interpret this as indicating that the source population was being transported northwards by the Hebridean slope current from where colonies of K. mikimotoi were injected onto the continental shelf by eddies or other transient exchange processes. The model was used to investigate the effects on simulated K. mikimotoi transport and dispersal of: (1) the distribution of the initial seed population; (2) algal growth and mortality; (3) water temperature; (4) the vertical movement of particles by diurnal migration and eddy diffusion; (5) the relative role of the shelf edge and coastal currents; (6) the role of wind forcing. The numerical experiments emphasized the requirement for a physiologically based biological model and indicated that improved modelling of future blooms will potentially benefit from better parameterisation of temperature dependence of both growth and mortality and finer spatial and temporal hydrodynamic resolution.  相似文献   

18.
A massive fish kill and water discoloration were reported off the western coast of Puerto Princesa, Palawan, Philippines in March 2005. Phytoplankton analysis revealed a near monospecific bloom of the dinoflagellate, Cochlodinium polykrikoides, with cell concentrations ranging from 2.5 × 105 to 3.2 × 106 cells per liter. Ground truth data were supplemented by processed satellite images from MODIS Aqua Level 2 data (1 km resolution) from January to April 2005, which revealed high surface chlorophyll-a levels (up to 50 mg/m3) offshore of west and southwest Palawan as early as February 2005. The bloom extended 310 km in length and 80 km in width at its peak in March off the central coast (Puerto Princesa). By April, the bloom declined in intensity, but was still apparent along the northern coast (El Nido). Fluctuations in chlorophyll levels off the western coast of Sabah, Malaysia and Brunei during this time period suggested that the bloom was not limited to the coast of Palawan. Satellite imagery from Sabah in late January revealed a plume of chl-a that is believed to be the source of the C. polykrikoides bloom in Palawan. This plume drifted offshore, advected northward via the basin-wide counterclockwise gyre, and reached nutrient-rich, upwelled waters near Palawan (due to a positive wind stress curl) where the dinoflagellate bloomed and persisted for 2 months from March to April 2005.  相似文献   

19.
De Sève  M. A. 《Hydrobiologia》1993,269(1):225-233
Phytoplankton biomass and species composition were studied from June to September 1991 at the mouth of four major rivers and in the freshwater (sal. 0 %), the estuarine (sal. 2–10%) and the coastal (sal. 10–12%) zones of Rupert Bay, located at the southeast tip of James Bay, Canada.A chlorophyll a maximum (5–14 µg 1–1) was observed in the freshwater zone from July to September. Chlorophyll values were low at the mouth of the rivers and in the estuarine and coastal zones (chl a < 1.00 µg 1–1). Diatoms were dominant in the freshwater zone (30–80 % abundance), with flagellates dominating in the estuarine and coastal zones (60–95% abundance). Diversity was low (H: 1.5–2.5) in the freshwater zone and decreased seaward (H: 0.5–1.5).The diatom bloom was composed almost exclusively of the autochthonous planktonic diatom Cyclotella meneghiniana Kütz., which contributed 25–85% of the species composition, and of the subdominant benthic species Diploneis smithii, Navicula lanceolata and Surirella robusta. Peak abundance occurred upstream of the turbidity maximum, in the tidal freshwater zone. In this zone the mean photic depth was 1 m and residence time was from 7 to 8 days during the bloom. Residence time is considered to be the dominant factor controlling the phytoplankton bloom, with light not acting as a limiting factor. The high turbidity due to resuspension and shallow depth of the bay controlled the species composition.  相似文献   

20.
Blooms of Karenia brevis, the red tide forming dinoflagellate in the Gulf of Mexico, cause a myriad of ecological and economic problems for coastal communities, including massive fish and mammal mortalities, and damage to tourism and fisheries/shellfish harvesting industries. There is a need for accurate detection and prediction of K. brevis blooms, including rapid and inexpensive monitoring of both water and shellfish meats to ensure the safety of shellfish harvested for human consumption. To address this issue, we have developed a protocol for easy field extraction of cellular RNA from water samples and coupled it with a handheld nucleic acid sequence-based amplification (NASBA) sensor that amplifies and detects target mRNA specific to the rbcL gene of K. brevis. This extraction protocol is a modified version of the Qiagen RNeasy Mini Kit spin protocol and requires no specialized equipment or training. Once extracted, the RNA is amplified and detected by NASBA in an in-house designed and produced handheld sensor that provides a real-time fluorescence plotting of the amplification. Both the field RNA extraction protocol and the handheld NASBA analyzer compared favorably to laboratory-based technologies. In duplicate reactions, the amplification curves generated with the handheld detector closely mirrored the curves generated with the bench top Nuclisens EasyQ NASBA analyzer and there was no difference in the sensitivity obtained using the handheld device versus the bench top models. This extraction protocol and detection sensor will be a valuable tool for rapidly monitoring K. brevis in field environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号