首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The previously reported mouse liver cell line FL83B has been characterized more completely with respect to its light and electron microscopic appearance, chromosomal composition, and ability to secrete various serum proteins. These cells bear many striking morphological similarities to parenchymal liver cells. Chromosomal analysis showed that the cells were transformed. The ability of these cells to grow in a completely chemically defined medium permitted the unequivocal demonstration of the synthesis of at least 12 mouse serum proteins including albumin and high density lipoprotein.  相似文献   

2.
G protein coupled receptor kinase 2 (GRK2) plays a central role in the regulation of a variety of important signaling pathways. Alternation of GRK2 protein level and activity casts profound effects on cell physiological functions and causes diseases such as heart failure, rheumatoid arthritis, and obesity. We have previously reported that overexpression of GRK2 has an inhibitory role in cancer cell growth. To further examine the role of GRK2 in cancer, in this study, we investigated the effects of reduced protein level of GRK2 on insulin‐like growth factor 1 receptor (IGF‐1R) signaling pathway in human hepatocellular carcinoma (HCC) HepG2 cells. We created a GRK2 knockdown cell line using a lentiviral vector mediated expression of GRK2 specific short hairpin RNA (shRNA). Under IGF‐1 stimulation, HepG2 cells with reduced level of GRK2 showed elevated total IGF‐1R protein expression as well as tyrosine phosphorylation of receptor. In addition, HepG2 cells with reduced level of GRK2 also demonstrated increased tyrosine phosphorylation of IRS1 at the residue 612 and increased phosphorylation of Akt, indicating a stronger activation of IGF‐1R signaling pathway. However, HepG2 cells with reduced level of GRK2 did not display any growth advantage in culture as compared with the scramble control cells. We further detected that reduced level of GRK2 induced a small cell cycle arrest at G2/M phase by enhancing the expression of cyclin A, B1, and E. Our results indicate that GRK2 has contrasting roles on HepG2 cell growth by negatively regulating the IGF‐1R signaling pathway and cyclins' expression. J. Cell. Physiol. 228: 1897–1901, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Id2 negatively regulates B cell differentiation in the spleen   总被引:2,自引:0,他引:2  
Early stages of B cell development occur in the bone marrow, resulting in formation of immature B cells. These immature cells migrate to the spleen where they differentiate into mature (B2 or marginal zone (MZ)) cells. This final maturation step is crucial for B cells to become responsive to Ags and to participate in the immune response. Id2 is a helix-loop-helix protein that lacks a DNA-binding region; and therefore, inhibits basic helix-loop-helix functions in a dominant negative manner. In this study, we show that Id2 expression is down-regulated during differentiation of immature B cells into mature B2 and MZ B cells. The high levels of Id2 expressed in the immature B cells result in inhibition of E2A binding activity to an E2 box site. Moreover, mice lacking Id2 show an elevation in the proportion of mature B2 cells in the spleen, while the MZ population in these mice is almost absent. Thus, Id2 acts as a regulator of the differentiation of immature B cells occurring in the spleen, it negatively controls differentiation into mature B2 cells while allowing the commitment to MZ B cells. In the absence of Id2 control, the unregulated differentiation is directed toward the mature B2 population.  相似文献   

4.
Lafora disease (LD), an inherited and fatal neurodegenerative disorder, is characterized by increased cellular glycogen content and the formation of abnormally branched glycogen inclusions, called Lafora bodies, in the affected tissues, including neurons. Therefore, laforin phosphatase and malin ubiquitin E3 ligase, the two proteins that are defective in LD, are thought to regulate glycogen synthesis through an unknown mechanism, the defects in which are likely to underlie some of the symptoms of LD. We show here that laforin's subcellular localization is dependent on the cellular glycogen content and that the stability of laforin is determined by the cellular ATP level, the activity of 5'-AMP-activated protein kinase, and the affinity of malin toward laforin. By using cell and animal models, we further show that the laforin-malin complex regulates cellular glucose uptake by modulating the subcellular localization of glucose transporters; loss of malin or laforin resulted in an increased abundance of glucose transporters in the plasma membrane and therefore excessive glucose uptake. Loss of laforin or malin, however, did not affect glycogen catabolism. Thus, the excessive cellular glucose level appears to be the primary trigger for the abnormally higher levels of cellular glycogen seen in LD.  相似文献   

5.
Zhang T  Wang S  Lin Y  Xu W  Ye D  Xiong Y  Zhao S  Guan KL 《Cell metabolism》2012,15(1):75-87
Glycogen phosphorylase (GP) catalyzes the rate-limiting step in glycogen catabolism and plays a key role in maintaining cellular and organismal glucose homeostasis. GP is the first protein whose function was discovered to be regulated by reversible protein phosphorylation, which is controlled by phosphorylase kinase (PhK) and protein phosphatase 1 (PP1). Here we report that lysine acetylation negatively regulates GP activity by both inhibiting enzyme activity directly and promoting dephosphorylation. Acetylation of GP Lys(470) enhances its interaction with the PP1 substrate-targeting subunit, G(L), and PP1, thereby promoting GP dephosphorylation and inactivation. We show that GP acetylation is stimulated by glucose and insulin and inhibited by glucagon. Our results provide molecular insights into the intricate regulation of the classical GP and a functional crosstalk between protein acetylation and phosphorylation.  相似文献   

6.
PIKfyve negatively regulates exocytosis in neurosecretory cells   总被引:2,自引:0,他引:2  
Regulated secretion depends upon a highly coordinated series of protein-protein and protein-lipid interactions. Two phosphoinositides, phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3-phosphate, are important for the ATP-dependent priming of the secretory apparatus prior to Ca(2+)-dependent exocytosis. Mechanisms that control phosphoinositide levels are likely to play an important role in priming fine tuning. Here we have investigated the involvement of PIKfyve, a phosphoinositide 5-kinase that can phosphorylate phosphatidylinositol 3-phosphate to produce phosphatidylinositol 3,5-bisphosphate on large dense core vesicle exocytosis from neuroendocrine cells. PIKfyve localizes to a subpopulation of secretory granules in chromaffin and PC12 cells. Nicotine stimulation promoted recruitment of PIKfyve-EGFP onto secretory vesicles in PC12 cells. YM-201636, a selective inhibitor of PIKfyve activity, and PIKfyve knockdown by small interfering RNA potentiated secretory granule exocytosis. Overexpression of PIKfyve or its yeast orthologue Fab1p inhibited regulated secretion in PC12 cells, whereas a catalytically inactive PIKfyve mutant had no effect. These results demonstrate a novel inhibitory role for PIKfyve catalytic activity in regulated secretion and provide further evidence for a fine tuning of exocytosis by 3-phosphorylated phosphoinositides.  相似文献   

7.
p62dok negatively regulates CD2 signaling in Jurkat cells   总被引:3,自引:0,他引:3  
p62(dok) belongs to a newly identified family of adaptor proteins. In T cells, the two members that are predominantly expressed, p56(dok) and p62(dok), are tyrosine phosphorylated upon CD2 or CD28 stimulation, but not upon CD3 ligation. Little is known about the biological role of Dok proteins in T cells. In this study, to evaluate the importance of p62(dok) in T cell function, we generated Jurkat clones overexpressing p62(dok). Our results demonstrate that overexpression of p62(dok) in Jurkat cells has a dramatic negative effect on CD2-mediated signaling. The p62(dok)-mediated inhibition affects several biochemical events initiated by CD2 ligation, such as the increase of intracellular Ca(2+), phospholipase C gamma 1 activation, and extracellular signal-regulated kinase 1/2 activation. Importantly, these cellular events are not affected in the signaling cascade induced by engagement of the CD3/TCR complex. However, both CD3- and CD2-induced NF-AT activation and IL-2 secretion are impaired in p62(dok)-overexpressing cells. In addition, we show that CD2 but not CD3 stimulation induces p62(dok) and Ras GTPase-activating protein recruitment to the plasma membrane. These results suggest that p62(dok) plays a negative role at multiple steps in the CD2 signaling pathway. We propose that p62(dok) may represent an important negative regulator in the modulation of the response mediated by the TCR.  相似文献   

8.
Leupaxin negatively regulates B cell receptor signaling   总被引:1,自引:0,他引:1  
The role of the paxillin superfamily of adaptor proteins in B cell antigen receptor (BCR) signaling has not been studied previously. We show here that leupaxin (LPXN), a member of this family, was tyrosine-phosphorylated and recruited to the plasma membrane of human BJAB lymphoma cells upon BCR stimulation and that it interacted with Lyn (a critical Src family tyrosine kinase in BCR signaling) in a BCR-induced manner. LPXN contains four leucine-rich sequences termed LD motifs, and serial truncation and specific domain deletion of LPXN indicated that its LD3 domain is involved in the binding of Lyn. Of a total of 11 tyrosine sites in LPXN, we mutated Tyr(22), Tyr(72), Tyr(198), and Tyr(257) to phenylalanine and demonstrated that LPXN was phosphorylated by Lyn only at Tyr(72) and that this tyrosine site is proximal to the LD3 domain. The overexpression of LPXN in mouse A20 B lymphoma cells led to the suppression of BCR-induced activation of JNK, p38 MAPK, and, to a lesser extent, Akt, but not ERK and NFkappaB, suggesting that LPXN can selectively repress BCR signaling. We further show that LPXN suppressed the secretion of interleukin-2 by BCR-activated A20 B cells and that this inhibition was abrogated in the Y72F LPXN mutant, indicating that the phosphorylation of Tyr(72) is critical for the biological function of LPXN. Thus, LPXN plays an inhibitory role in BCR signaling and B cell function.  相似文献   

9.
The immunoreceptor tyrosine-based inhibition motif (ITIM) is found in various membrane molecules such as CD22 and the low-affinity Fc receptor for IgG in B cells and the killer cell-inhibitory receptor and Ly-49 in NK cells. Upon tyrosine phosphorylation at the ITIMs, these molecules recruit SH2 domain-containing phosphatases such as SH2-containing tyrosine phosphatase-1 and negatively regulate cell activity. The B cell surface molecule CD72 carries an ITIM and an ITIM-like sequence. We have previously shown that CD72 is phosphorylated and recruits SH2-containing tyrosine phosphatase-1 upon cross-linking of the Ag receptor of B cells (BCR). However, whether CD72 modulates BCR signaling has not yet been elucidated. In this paper we demonstrate that expression of CD72 down-modulates both extracellular signal-related kinase (ERK) activation and Ca2+ mobilization induced by BCR ligation in the mouse B lymphoma line K46micromlambda, whereas BCR-mediated ERK activation was not reduced by the ITIM-mutated form of CD72. Moreover, coligation with CD72 with BCR reduces BCR-mediated ERK activation in spleen B cells of normal mice. These results indicate that CD72 negatively regulates BCR signaling. CD72 may play a regulatory role in B cell activation, probably by setting a threshold for BCR signaling.  相似文献   

10.
Evidence is accumulating that Rho-associated kinase (Rho-kinase) plays important roles not only in vascular smooth muscle cell contraction, but also in a variety of cellular functions, including bone metabolism. In the present study, we investigated the involvement of Rho-kinase in the osteocalcin synthesis induced by triiodothyronine (T3) in osteoblast-like MC3T3-E1 cells. T3 time-dependently induced phosphorylation of myosin phosphatase targeting subunit (MYPT-1), a substrate of Rho-kinase. Y27632, a specific inhibitor of Rho-kinase, attenuated the MYPT-1 phosphorylation induced by T3. T3-stimulated osteocalcin release was significantly enhanced by Y27632. Fasudil, another Rho-kinase inhibitor, amplified the osteocalcin release induced by T3. T3-stimulated osteocalcin release was significantly augmented in Rho-knockdown cells with Rho A-siRNA. Y27632 and fasudil also increased the mRNA expression level of osteocalcin induced by T3. These results strongly suggest that T3 stimulates the activation of Rho-kinase in osteoblasts, which functions as a negative regulator of T3-stimulated osteocalcin synthesis.  相似文献   

11.
12.
Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA1–LPA6) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA1 inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA5 in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA1 and LPA5 on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA5 may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA1.  相似文献   

13.
Retention of glycogen in cryosubstituted mouse liver   总被引:1,自引:0,他引:1  
A periodic acid-Schiff (PAS)-type reaction in which osmium-ammine was used as the reagent was carried out on ultrathin sections of mouse liver in order to study the extent to which glycogen is preserved. Comparisons were made between tissues that were, on the one hand, conventionally fixed and dehydrated and, on the other, those that were high-pressure frozen and cryosubstituted in acetone. A control was carried out for both groups using a routine uranyl acetate-lead citrate staining procedure. In the latter case, glycogen could be identified as electron-clear patches in the cytoplasm whereas after a PAS-type reaction, glycogen became darkly contrasted. In the case of conventionally fixed samples, glycogen appeared to display a certain amount of clumping separated by gaps whereas in cryosubstituted specimens it was denser and often showed elongated interconnecting structures. These results suggest that cryofixation and cryosubstitution provide better preservation of glycogen in mouse liver tissue compared with chemically fixed specimens. In addition, the fine structure of glycogen appears more homogeneous, showing less aggregation in cryo-treated liver samples.  相似文献   

14.
SIRT2 is primarily a cytoplasmic protein deacetylase and is abundantly expressed in metabolically active tissues like adipocytes and brain. However, its role, if any, in regulating insulin signaling in skeletal muscle cells, is not known. We have examined the role of SIRT2 in insulin-mediated glucose disposal in normal and insulin resistant C2C12 skeletal muscle cells in vitro. SIRT2 was over expressed in insulin resistant skeletal muscle cells. Pharmacological inhibition of SIRT2 increased insulin-stimulated glucose uptake and improved phosphorylation of Akt and GSK3β in insulin resistant cells. Knockdown of endogenous SIRT2 and over expression of catalytically-inactive SIRT2 mutant under insulin-resistant condition showed similar amelioration of insulin sensitivity. Our results suggest that down-regulation of SIRT2 improved insulin sensitivity in skeletal muscle cells under insulin-resistant condition. Previously it has been reported that down-regulation of SIRT1 and SIRT3 in C2C12 cells results in impairment of insulin signaling and induces insulin resistance. However, we have observed an altogether different role of SIRT2 in skeletal muscle. This implicates a differential regulation of insulin resistance by sirtuins which otherwise share a conserved catalytic domain. The study significantly directs towards future approaches in targeting inhibition of SIRT2 for therapeutic treatment of insulin resistance which is the major risk factor in Type 2 diabetes.  相似文献   

15.
The human pregnane X receptor (hPXR) regulates the expression of critical drug metabolism enzymes. One of such enzymes, cytochrome P450 3A4 (CYP3A4), plays critical roles in drug metabolism in hepatocytes that are either quiescent or passing through the cell cycle. It has been well established that the expression of P450, such as CYP3A4, is markedly reduced during liver development or regeneration. Numerous studies have implicated cellular signaling pathways in modulating the functions of nuclear receptors, including hPXR. Here we report that inhibition of cyclin-dependent kinases (Cdks) by kenpaullone and roscovitine (two small molecule inhibitors of Cdks that we identified in a screen for compounds that activate hPXR) leads to activation of hPXR-mediated CYP3A4 gene expression in HepG2 human liver carcinoma cells. Consistent with this finding, activation of Cdk2 attenuates the activation of CYP3A4 gene expression. In vitro kinase assays revealed that Cdk2 directly phosphorylates hPXR. A phosphomimetic mutation of a putative Cdk phosphorylation site, Ser(350), significantly impairs the function of hPXR, whereas a phosphorylation-deficient mutation confers resistance to Cdk2. Using HepG2 that has been stably transfected with hPXR and the CYP3A4-luciferase reporter, enriched in different phases of the cell cycle, we found that hPXR-mediated CYP3A4 expression is greatly reduced in the S phase. Our results indicate for the first time that Cdk2 negatively regulates the activity of hPXR, and suggest an important role for Cdk2 in regulating hPXR activity and CYP3A4 expression in hepatocytes passing through the cell cycle, such as those in fetal or regenerating adult liver.  相似文献   

16.
17.
Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development and progression of many chronic diseases.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号