首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localized activation of circulating glucocorticoids in vivo by the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) plays a critical role in the development of the metabolic syndrome. However, the precise contribution of 11beta-HSD1 in the initiation of adipogenesis by inactive glucocorticoids is not fully understood. 3T3-L1 fibroblasts can be terminally differentiated to mature adipocytes in a glucocorticoid-dependent manner. Both inactive rodent dehydrocorticosterone and human cortisone were able to substitute for the synthetic glucocorticoid dexamethasone in 3T3-L1 adipogenesis, suggesting a potential role for 11beta-HSD1 in these effects. Differentiation of 3T3-L1 cells caused a strong increase in 11beta-HSD1 protein levels, which occurred late in the differentiation protocol. Reduction of 11beta-HSD1 activity in 3T3-L1 fibroblasts, achieved by pharmacological inhibition or adenovirally mediated delivery of short hairpin RNA constructs, specifically blocked the ability of inactive glucocorticoids to drive 3T3-L1 differentiation. However, even modest increases in exogenous 11beta-HSD1 expression in 3T3-L1 fibroblasts, to levels comparable with endogenous 11beta-HSD1 in differentiated 3T3-L1 adipocytes, were sufficient to block adipogenesis. Luciferase reporter assays indicated that overexpressed 11beta-HSD1 was catalyzing the inactivating dehydrogenase reaction, because the ability of both active and inactive glucocorticoids to activate the glucocorticoid receptor were largely suppressed. These results suggest that the temporal regulation of 11beta-HSD1 expression is tightly controlled in 3T3-L1 cells, so as to mediate the initiation of differentiation by inactive glucocorticoids and also to prevent the inhibitory activity of prematurely expressed 11beta-HSD1 during adipogenesis.  相似文献   

2.
Adipogenesis is associated with the upregulation of the antioxidative enzyme manganese superoxide dismutase (MnSOD) suggesting a vital function of this enzyme in adipocyte maturation. In the current work, MnSOD was knocked-down with small-interference RNA in preadipocytes to study its role in adipocyte differentiation. In mature adipocytes differentiated from these cells, proteins characteristic for mature adipocytes, which are strongly induced in late adipogenesis like adiponectin and fatty acid-binding protein 4, are markedly reduced. Triglycerides begin to accumulate after about 6 days of the induction of adipogenesis, and are strongly diminished in cells with low MnSOD. Proteins upregulated early during differentiation, like fatty acid synthase and cytochrome C oxidase-4, are not altered. Cell viability, insulin-mediated phosphorylation of Akt, antioxidative capacity (AOC), superoxide levels, and heme oxygenase 1 with the latter being induced upon oxidative stress are not affected. L-Buthionine-(S,R)-sulfoximine (BSO) depletes glutathione and modestly lowers AOC of mature adipocytes. Addition of BSO to 3T3-L1 cells 3 days after the initiation of differentiation impairs triglyceride accumulation and expression of proteins induced in late adipogenesis. Of note, proteins that increased early during adipogenesis are also diminished, suggesting that BSO causes de-differentiation of these cells. Preadipocyte proliferation is not considerably affected by low MnSOD and BSO. These data suggest that glutathione and MnSOD are essential for adipogenesis.  相似文献   

3.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a critical role in regulating insulin sensitivity and glucose homeostasis. In this study, we identified highly efficient small interfering RNA (siRNA) sequences and used lentiviral short hairpin RNA and electroporation of siRNAs to deplete PPAR-gamma from 3T3-L1 adipocytes to elucidate its role in adipogenesis and insulin signaling. We show that PPAR-gamma knockdown prevented adipocyte differentiation but was not required for maintenance of the adipocyte differentiation state after the cells had undergone adipogenesis. We further demonstrate that PPAR-gamma suppression reduced insulin-stimulated glucose uptake without affecting the early insulin signaling steps in the adipocytes. Using dual siRNA strategies, we show that this effect of PPAR-gamma deletion was mediated by both GLUT4 and GLUT1. Interestingly, PPAR-gamma-depleted cells displayed enhanced inflammatory responses to TNF-alpha stimulation, consistent with a chronic anti-inflammatory effect of endogenous PPAR-gamma. In summary, 1) PPAR-gamma is essential for the process of adipocyte differentiation but is less necessary for maintenance of the differentiated state, 2) PPAR-gamma supports normal insulin-stimulated glucose transport, and 3) endogenous PPAR-gamma may play a role in suppression of the inflammatory pathway in 3T3-L1 cells.  相似文献   

4.
Based on recent evidence that fatty acid synthase and endogenously produced fatty acid derivatives are required for adipogenesis in 3T3-L1 adipocytes, we conducted a small interfering RNA-based screen to identify other fatty acid-metabolizing enzymes that may mediate this effect. Of 24 enzymes screened, stearoyl-CoA desaturase 2 (SCD2) was found to be uniquely and absolutely required for adipogenesis. Remarkably, SCD2 also controls the maintenance of adipocyte-specific gene expression in fully differentiated 3T3-L1 adipocytes, including the expression of SCD1. Despite the high sequence similarity between SCD2 and SCD1, silencing of SCD1 did not down-regulate 3T3-L1 cell differentiation or gene expression. SCD2 mRNA expression was also uniquely elevated 44-fold in adipose tissue upon feeding mice a high fat diet, whereas SCD1 showed little response. The inhibition of adipogenesis caused by SCD2 depletion was associated with a decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA and protein, whereas in mature adipocytes loss of SCD2 diminished PPARgamma protein levels, with little change in mRNA levels. In the latter case, SCD2 depletion did not change the degradation rate of PPARgamma protein but decreased the metabolic labeling of PPARgamma protein using [(35)S]methionine/cysteine, indicating protein translation was decreased. This requirement of SCD2 for optimal protein synthesis in fully differentiated adipocytes was verified by polysome profile analysis, where a shift in the mRNA to monosomes was apparent in response to SCD2 silencing. These results reveal that SCD2 is required for the induction and maintenance of PPARgamma protein levels and adipogenesis in 3T3-L1 cells.  相似文献   

5.
Impairment of redox homeostasis has been extensively associated with obesity, as a consequence of the chronic inflammatory state present in overweight subjects. Deregulation of glutathione (GSH), the most important non‐enzymatic intracellular anti‐oxidant, induces insulin resistance in mature adipocytes, but data are lacking about its effects on adipogenesis. In this report we demonstrate that during adipogenesis of 3T3‐L1 cells the GSH/GSSG ratio decreases, shifting redox status towards oxidizing conditions. Moreover, we demonstrate that inhibition of GSH synthesis, obtained by treatment with L ‐buthionine‐sulfoximine (BSO), enhances C/EBPβ LAP/LIP ratio and PPARγ expression during mitotic clonal expansion (MCE) stimulating adipogenesis. On the contrary, GSH ethyl ester (GSHest) supplementation completely abrogates this process also in the presence of BSO. GSH decrement during the first 24 h of adipogenesis is sufficient to induce higher triglyceride accumulation in differentiated adipocytes with respect to control, whereas GSHest treatment inhibits lipid droplets formation. We further demonstrate that Resveratrol (RV) could exert anti‐adipogenic properties also by increasing GSH content through γ‐glutamyl‐cysteine ligase (GCL) induction. Overall data indicate that in pre‐adipocytes the decrease of GSH accelerates adipogenesis, suggesting that the use of agents able to maintain GSH redox status in adipose tissue, such as RV, could be promising in stopping the lipogenic loop of obesity. J. Cell. Physiol. 226: 2016–2024, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
8.
Accumulating evidence suggests that inhibition of mitogen‐activated protein kinase signalling can reduce phosphorylation of peroxisome proliferator‐activated receptor γ (PPARγ) at serine 273, which mitigates obesity‐associated insulin resistance and might be a promising treatment for type 2 diabetes. Dihydromyricetin (DHM) is a flavonoid that has many beneficial pharmacological properties. In this study, mouse fibroblast 3T3‐L1 cells were used to investigate whether DHM alleviates insulin resistance by inhibiting PPARγ phosphorylation at serine 273 via the MEK/ERK pathway. 3T3‐L1 pre‐adipocytes were differentiated, and the effects of DHM on adipogenesis and glucose uptake in the resulting adipocytes were examined. DHM was found to dose dependently increase glucose uptake and decrease adipogenesis. Insulin resistance was then induced in adipocytes using dexamethasone, and DHM was shown to dose and time dependently promote glucose uptake in the dexamethasone‐treated adipocytes. DHM also inhibited phosphorylation of PPARγ and ERK. Inhibition of PPARγ activity with GW9662 potently blocked DHM‐induced glucose uptake and adiponectin secretion. Interestingly, DHM showed similar effects to PD98059, an inhibitor of the MEK/ERK pathway. DHM acted synergistically with PD98059 to improve glucose uptake and adiponectin secretion in dexamethasone‐treated adipocytes. In conclusion, our findings indicate that DHM improves glucose uptake in adipocytes by inhibiting ERK‐induced phosphorylation of PPARγ at serine 273.  相似文献   

9.
O-linked N-acetylglucosamine (O-GlcNAc) protein modification has been implicated in the regulation of signaling pathways, cell function, and gene expression. Glutamine:fructose-6-phosphate amidotransferase-1 (GFAT-1) is the rate-limiting enzyme in the hexosamine biosynthetic pathway (HBP), which generates the sugar nucleotide UDP-GlcNAc, where this nucleotide acts as the donor for O-GlcNAc modification. In this study, we determined whether GFAT-1 regulates adipogenesis in adipocytes. 3T3-L1 preadipocytes were differentiated using medium containing high glucose, insulin, dexamethasone, and isobutylmethylxanthine. Cells were harvested 4, 8, and 12 h and 1, 2, 3, 4, 6, and 8 days after the initiation of differentiation. Global level of O-GlcNAc modification increased 4 h after induction and persisted for 8 days of observation. GFAT-1 mRNA and protein expression was also upregulated beginning 4 h after induction. Pharmacological inhibition of GFAT-1 or GFAT-1 siRNA treatment blocked the increase in O-GlcNAcylation and the formation of lipid droplets in adipocytes. GFAT-1 may regulate the expression of C/EBPβ, PPARγ, SREBP-1, fatty acid synthase, S3-12, perilipin, or adipophilin during adipogenesis. Our results suggest that GFAT-1 plays a critical role in modulating adipogenesis via the regulation of protein O-GlcNAcylation in adipocytes.  相似文献   

10.
11.
12.
CREB activation induces adipogenesis in 3T3-L1 cells   总被引:10,自引:0,他引:10       下载免费PDF全文
  相似文献   

13.
Type 2 diabetes, a chronic disease, affects about 150 million people world wide. It is characterized by insulin resistance of peripheral tissues such as liver, skeletal muscle, and fat. Insulin resistance is associated with elevated levels of tumor necrosis factor alpha (TNF-α), which in turn inhibits insulin receptor tyrosine kinase autophosphorylation. It has been reported that cannabis is used in the treatment of diabetes. A few reports indicate that smoking cannabis can lower blood glucose in diabetics. Δ9-tetrahydrocannabinol (THC) is the primary psychoactive component of cannabis. This study aimed to determine the effect of a lipophilic cannabis extract on adipogenesis, using 3T3-L1 cells, and to measure its effect on insulin sensitivity in insulin resistant adipocytes. Cells were cultured in Dulbecco's modified eagle medium (DMEM) with 10% fetal bovine serum (FBS) and differentiated over a 3 day period for all studies. In the adipogenesis studies, differentiated cells were exposed to the extract in the presence and absence of insulin. Lipid content and glucose uptake was subsequently measured. Insulin-induced glucose uptake increased, while the rate of adipogenesis decreased with increasing THC concentration. Insulin-resistance was induced using TNF-α, exposed to the extract and insulin-induced glucose uptake measured. Insulin-induced glucose was increased in these cells after exposure to the extract. Semiquantitative real time polymerase chain reaction (RT-PCR) was performed after ribonucleic acid (RNA) extraction to evaluate the effects of the extract on glucose transporter isotype 4 (GLUT-4), insulin receptor substrate-1 (IRS-1) and IRS-2 gene expression.  相似文献   

14.
Cultured TA1 adipocytes treated with tumor necrosis factor alpha (TNF) lose intracytoplasmic lipid and, over a period of days, come to resemble their predifferentiated progenitors (preadipocytes). To examine the extent to which this phenotypic reversion represents a return to a less differentiated cell, we examined three major characteristics that distinguish preadipocytes from adipocytes: (a) pattern of gene expression; (b) hormonal requirement for accelerated adipogenesis; and (c) pattern of protein synthesis. We found that within hours of TNF addition to adipocytes, mRNAs for genes whose expression is augmented during adipogenesis decreased to predifferentiated levels; in addition, like preadipocytes, TNF-treated adipocytes required exposure to hormones to accelerate adipogenesis. Further, the pattern of protein synthesis seen on polyacrylamide gels reverted to that seen before differentiation. Transforming growth factor-beta (TGF-beta) also caused a rapid decrease in expression of adipose genes when added to fully differentiated cells, an effect that was achieved by treatment with either TGF-beta 1 or TGF-beta 2. These effects were seen in the absence of a demonstrable proliferative response to either TNF or TGF-beta. Thus characteristics that define the "terminally" differentiated state in adipocytes are subject to modulation by environmental influences.  相似文献   

15.
16.
17.
Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor γ2, CCAAT/enhancer-binding protein alpha (C/EBPα), sterol regulatory element binding protein-1c, and Krüppel-like factor 15, but not those of C/EBPβ or C/EBPδ, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.  相似文献   

18.
Obesity and metabolic disorders caused by alterations in lipid metabolism are major health issues in developed, affluent societies. Adipose tissue is the only organ that stores lipids and prevents lipotoxicity in other organs. Mature adipocytes can affect themselves and distant metabolism-related tissues by producing various adipokines, including adiponectin and leptin. The engulfment adaptor phosphotyrosine-binding domain-containing 1 (GULP1) regulates intracellular trafficking of glycosphingolipids and cholesterol, suggesting its close association with lipid metabolism. However, the role of GULP1 in adipocytes remains unknown. Therefore, this study aimed to investigate the function of GULP1 in adipogenesis, glucose uptake, and the insulin signaling pathway in adipocytes. A 3T3-L1 cell line with Gulp1 knockdown (shGulp1) and a 3T3-L1 control group (U6) were established. Changes in shGulp1 cells due to GULP1 deficiency were examined and compared to those in U6 cells using microarray analysis. Glucose uptake was monitored via insulin stimulation in shGulp1 and U6 cells using a 2-NBDG glucose uptake assay, and the insulin signaling pathway was investigated by western blot analysis. Adipogenesis was significantly delayed, lipid metabolism was altered, and several adipogenesis-related genes were downregulated in shGulp1 cells compared to those in U6 cells. Microarray analysis revealed significant inhibition of peroxisome proliferator-activated receptor signaling in shGulp1 cells compared with U6 cells. The production and secretion of adiponectin as well as the expression of adiponectin receptor were decreased in shGulp1 cells. In particular, compared with U6 cells, glucose uptake via insulin stimulation was significantly decreased in shGulp1 cells through the disturbance of ERK1/2 phosphorylation. This is the first study to identify the role of GULP1 in adipogenesis and insulin-stimulated glucose uptake by adipocytes, thereby providing new insights into the differentiation and functions of adipocytes and the metabolism of lipids and glucose, which can help better understand metabolic diseases.  相似文献   

19.
Non-esterified fatty acids are thought to be one of the causes for insulin resistance. However, the molecular mechanism of fatty acid-induced insulin resistance is not clearly known. In this study, we first examined the effect of palmitate on insulin signaling in 3T3-L1 adipocytes. We found that 1h treatment with 1 mmol/l palmitate had no effect on insulin binding, tyrosine phosphorylation of insulin receptors, 185 kDa proteins and Shc, and PI3 kinase activity in 3T3-L1 adipocytes. Then, the effects of palmitate on MAP kinase activity and glucose uptake in fully differentiated 3T3-L1 adipocytes were compared with those in poorly differentiated 3T3-L1 cells and in HIRc-B cells. Palmitate treatment had no effect on MAP kinase activity in fully differentiated 3T3-L1 adipocytes, while it inhibited MAP kinase in poorly differentiated 3T3-L1 cells and HIRc-B cells. Glucose transport in 3T3-L1 adipocytes treated with palmitate for 1 h, 4 h and 16 h was higher than that in control cells, but palmitate treatment caused a rightward shift of the insulin-dose responsive curve for glucose uptake in HIRc-B cells. Palmitate treatment did not significantly affect basal and insulin-stimulated GLUT4 translocation. When the cells were treated with PD98059, a specific MEK inhibitor, insulin-stimulated glucose uptake was not affected in 3T3-L1 adipocytes, while it was almost completely inhibited in HIRc-B cells. These results suggest the primary effect of palmitate on adipocytes may not involve insulin resistance of adipocytes themselves.  相似文献   

20.
Dioxinodehydroeckol (DHE) isolated from Ecklonia cava, has previously been investigated for its inhibition of the differentiation of 3T3-L1 preadipocytes into adipocytes. Levels of lipid accumulation were measured, along with changes in the expression of genes and proteins associated with adipogenesis and lipolysis. Confluent 3T3-L1 preadipocytes in medium with or without different concentrations of DHE for 7 days were differentiated into adipocytes. Lipid accumulation was quantified by measuring direct triglyceride contents and Oil-Red O staining. The expression of genes and proteins associated with adipogenesis and lipolysis was measured using RT-PCR, quantitative real-time RT-PCR and Western blotting analysis. It was found that the presence of DHE significantly reduced lipid accumulation and down-regulated the expression of peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein 1 (SREBP1) and CCAAT/enhancer-binding proteins (C/EBPα) in a dose-dependent manner. Moreover, DHE suppressed regulation of the adipocyte-specific gene promoters such as fatty acid binding protein (FABP4), fatty acid transport protein (FATP1), fatty acid synthase (FAS), lipoprotein lipase (LPL), acyl-CoA synthetase 1 (ACS1), leptin, perilipin and HSL compared to control adipocytes. The specific mechanism mediating the effects of DHE was confirmed by activation of phosphorylated AMP-activated protein kinase (pAMPK). Therefore, these results suggest that DHE exerts anti-adipogenic effect on adipocyte differentiation through the activation and modulation of the AMPK signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号