首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenic has been proposed as a chemotherapeutic agent for leukemia and other solid tumors. However, its environmental exposure has been linked epidemiologically with an elevated carcinoma risk (i.e. skin, bladder and lung), with cellular oxidative stress being implicated in both induced-arsenic toxicity and carcinogenicity. Consequently, antioxidants may differentially interfere in these effects. The human mammary adenocarcinoma lines MCF-7 and ZR-75-1 were treated in vitro with 200 microM NaAsO(2) (As), 5 microM silymarin (S) and/or 50 microM quercetin (Q). The following biomembrane parameters were assessed: sialic acid (SA) in gangliosides, gamma-glutamyltranspeptidase activity (GGT), conjugated dienes and free radical activity, in order to evaluate the arsenite-flavonoid interactions. The time-dependent arsenite toxicity was not prevented by flavonoids in ZR-75-1 cells, whereas quercetin protected MCF-7 cells for 8 h. With regard to GGT, only quercetin protected ZR-75-1 cells against stress. In MCF-7 cells, the arsenite-induced GGT activity was not counteracted by either quercetin or silymarin. S, Q, As and As + S treatments reduced the SA content only in the MCF-7 membrane, while As + Q treatment increased it in both lines. The membrane resistance to lipid oxidation in these cells enclosed the up-regulation of GGT activity and sialylglycolipid content. Taking these results together, quercetin interfered with arsenite toxicity, whereas silymarin was not able. Thus, the potential role of flavonoids as co-adjutants may differ widely in therapeutic protocols.  相似文献   

2.
The long-term toxicity of arsenic (As) as a result of exposure to contaminated drinking water might be modified by coinciding exposures to elements like selenium, antimony, or mercury. In this study the influence of tetravalent selenite, trivalent antimonite, and divalent mercury was investigated in vitro using cultured primary rat hepatocytes. The cell vitality was assessed in the 3-[4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] (MTT), assay with concurrent exposures of the cells to up to 50 microM sodium arsenite(III) and a potential modifier [50 microM sodium(IV) selenite, 10 microM antimony(III) chloride, 25 microM mercuric(II) chloride], which indicated an additive increase in the combined cytotoxicity. Sodium arsenite was tested for genotoxicity in the micronucleus test in a concentration range of 0.25 up to 7.5 microM. In this range, the MTT conversion was at least 80%, indicating high cell viability. Adose-dependent induction of micronuclei was observed. The lowest concentration causing a significantly elevated frequency of micronuclei was 1 microM As (p < 0.05). A significant influence (i.e., reduction of the combined genotoxicity as a result of the presence of a potential modifier) was only observed for 10 and 25 microM antimony chloride (p < 0.05, Fisher's exact test). The metabolic methylation of arsenite was not affected by concurrent incubation with any of the potential modifiers.  相似文献   

3.
4.
5.
Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme that degrades heme to three products, biliverdin, carbon monoxide (CO), and iron ion. The present study was originally designed to characterize the HO-1 induction by Lumbricus extract as a potential cytoprotective mechanism. Through bioactivity-guided fractionation, with human HepG2 cells as the cellular detector, surprisingly, we found that arsenic was enriched in the active fractions isolated from Lumbricus extract. Arsenic speciation was further carried out by liquid chromatography with inductively coupled plasma mass spectrometry (LC/ICP-MS). Our results showed that Lumbricus extract contained two major arsenic species, arsenite (As(III) ; 53.7%) and arsenate (As(V) ; 34.2%), and six minor arsenic species. Commercial sodium arsenite (NaAsO(2) ) was used to verify the effects of Lumbricus extract on HO-1 expression and related intracellular signaling pathways. Both p38 MAP kinase and NF-E2-related factor 2 (Nrf2) pathways were found to modulate HO-1 induction by Lumbricus extract and NaAsO(2) . The cytotoxicity of arsenite was augmented by p38 MAP kinase inhibitor SB202190 and HO-1 inhibitor tin protoporphyrin IX (SnPP), whereas p38 MAP kinase inhibitor SB202190 also inhibited HO-1 induction by NaAsO(2) . These results suggest that arsenic-containing compounds are responsible for HO-1 induction by Lumbricus extract. Although the exact role of toxic arsenic compounds in the treatment of oxidative injury remains unclear, concomitant HO-1 induction may be a key mechanism to antagonize the cytotoxicity of arsenic compounds in human cells.  相似文献   

6.
7.
8.
9.
Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes   总被引:1,自引:0,他引:1  
Recent studies have demonstrated the potential of pesticides to either inhibit or induce xenobiotic metabolizing enzymes in humans. Exposure of human hepatocytes to doses of fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazole-3-carbonitrile) ranging from 0.1 to 25 microM resulted in a dose dependent increase in CYP1A1 mRNA expression (3.5 to approximately 55-fold) as measured by the branched DNA assay. In a similar manner, CYP3A4 mRNA expression was also induced (10-30-fold), although at the higher doses induction returned to near control levels. CYP2B6 and 3A5 were also induced by fipronil, although at lower levels (2-3-fold). Confirmation of bDNA results were sought through western blotting and/or enzyme activity assays. Western blots using CYP3A4 antibody demonstrated a dose responsive increase from 0.5 to 1 microM followed by decreasing responses at higher concentrations. Similar increases and decreases were observed in CYP3A4-specific activity levels as measured using 6beta-hydroxytestosterone formation following incubation with testosterone. Likewise, activity levels for a CYP1A1-specific substrate, luciferin CEE, demonstrated that CYP1A1 enzyme activities were maximally induced by 1 microM fipronil followed by dramatically declining activity measurements at 10 and 25 microM. Cytotoxic effects of fipronil and fipronil sulfone were examined using the adenylate kinase and the trypan blue exclusion assays in HepG2 cells and human hepatocytes. The results indicate both that HepG2 cells and primary human hepatocytes are sensitive to the cytotoxic effects of fipronil. The maximum induction of adenylate kinase was ca. 3-fold greater than the respective controls in HepG2 and 6-10-fold in the case of primary hepatocytes. A significant time- and dose-dependent induction of adenylate kinase activity in HepG2 cells was noted from 0.1 to 12.5 microM fipronil followed by decreasing activities at 25 and 50 microM. For fipronil sulfone, cytotoxic effects increased throughout the dose range. The trypan blue assay indicated that cytotoxic effects contributing to an increase of greater than 10% of control values was indicated at doses above 12.5 microM. However, fipronil sulfone induced cytotoxic effects at lower doses. The possibility that cytotoxic effects were due to apoptosis was indicated by significant time- and dose-dependent induction of caspase-3/7 activity in both HepG2 cells and human hepatocytes. Fipronil mediated activation of caspase-3/7 in concurrence with compromised ATP production and viability are attributed to apoptotic cell death.  相似文献   

10.
11.
Aim of the study was to investigate the usefulness of two human derived hepatoma cell lines (HepG2 and Hep3B) for the detection of dietary and lifestyle related DNA-reactive carcinogens. Comparisons of the sensitivity of HepG2 cells of different origin towards benzo[a]pyrene (B(a)P) showed that strong differences exist in the induction of micronuclei (MN). The most sensitive was used for all further experiments, in which we investigated the effects of aflatoxin B(1) (AFB(1)), B(a)P, As(2)O(3), CdCl(2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), N-nitrosodimethylamine (NDMA), N-nitrosopyrrolidine (NPYR), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), ethanol, acetaldehyde and caffeic acid in micronucleus (MN) tests. Dose dependent effects were detected in HepG2 with AFB(1) (0.2microM), CdCl(2) (2.2microM), As(2)O(3) (8.1microM), B(a)P (22.7microM), PhIP (35.7microM), NDMA (22.7mM), acetaldehyde (11.2mM) and ethanol (442.2mM). Numbers in parentheses indicate the C(D) values (concentration that induced a two-fold increase over the background). NNK and caffeic acid gave negative results under all conditions. In Hep3B cells, the effects were generally weaker. With PhIP, As(2)O(3) and NDMA negative results were obtained; with caffeic acid and NPYR marginal but significant induction of MN was observed. Enzyme measurements showed that both cell lines possess CYP1A1, glutathione-S-transferase (three-fold higher in HepG2) as well as N-acetyltransferase (NAT) 1 and sulfotransferases (SULT1A1 and SULT1A3; two- and seven-fold higher in HepG2); other cytochrome P450 enzymes (CYP1A2, 2B1, 2E1) and NAT2 were not detectable. The differences in the activities of the various enzymes may explain the contrasting results obtained in the MN experiments. Overall, our results indicate that the HepG2 line is more sensitive towards dietary genotoxins than Hep3B, and support the assumption that the HepG2/MN assay enables the detection of genotoxic carcinogens which give negative results in other currently used in vitro assays.  相似文献   

12.
13.
Arsenic, widely distributed in the environment, is a potent human carcinogen. Arsenite genotoxicity has been observed in a variety of cells and animal systems. However, the underlying mechanism is not completely clear. In this study, human fibroblasts (HFW) were treated with 1.25-10 microM arsenite for 24 h (low dose and long exposure) and 5-80 microM for 4 h (high dose and short exposure), and the arsenite accumulation, cytotoxicity, and micronucleus (MN) induction were examined. By these two different protocols, HFW cells showed equivalent levels of arsenite accumulation, but exhibited different kinetics of cell killing and different types of MN generation. Arsenite induced mainly kinetochore-positive MN (K+-MN) in HFW cells by low dose exposure whereas mainly kinetochore-negative MN (K--MN) was induced by high dose exposure. Catalase reduced both K+- and K--MN induced by these two exposure protocols. Except for the case of K+-MN induction by the high dose exposure protocol, N-acetyl-cysteine (NAC) in both low and high dose protocols was also shown to effectively reduce arsenite-induced MN. The present results imply that oxidative stress is involved in arsenite-induced MN in diploid human fibroblasts. However, different protocols for arsenite exposure may result in different cellular damage.  相似文献   

14.
Ho IC  Yih LH  Kao CY  Lee TC 《Mutation research》2000,452(1):41-50
Numerous reports have shown that oxidative stress is involved in arsenite-induced genetic damage. Arsenite is also a potent inducer of heme oxygenase (HO)-1. To understand whether HO-1 could function as a cellular antioxidant and protect cells from arsenite injury, the effects of tin-protoporphyrin (SnPP), a competitive inhibitor of HO-1, on arsenite-induced genetic damage were examined in human skin fibroblasts (HFW). In the present study, we found that SnPP at 100 microM significantly potentiated arsenite-induced cytotoxicity, DNA strand breaks (assayed by alkaline single cell gel electrophoresis(SCGE)), and chromatid breaks. Although arsenite alone mainly induced kinetochore-plus micronuclei (K(+)-MN), SnPP only synergistically enhanced kinetochore-negative micronuclei (K(-)-MN). The increase in K(-)-MN by SnPP cotreatment was consistent with the increase in DNA strand breaks and chromatid breaks caused by SnPP. However, at higher arsenite doses, K(+)-MN was significantly reduced by SnPP. Pretreatment of HFW cells with hemin, an inducer of HO-1, significantly attenuated the cytotoxicity of arsenite. Therefore, the present results suggest that HO-1 induction by arsenite plays certain roles in protecting cells from arsenite-induced injury.  相似文献   

15.
Biochemical indicators and in vitro models, if they mimic in vivo responses, offer potentially sensitive tools for inclusion in toxicity assessment programs. The purpose of this study was to determine whether the HepG2 cell line would mimic known in vivo or in vitro (or both) responses of mammalian systems when confronted with cadmium (Cd2+). Uptake and compartmentalization of Cd2+, metallothionein (MT) compartmentalization, and glutathione (GSH) depletion were examined. In addition, several cytotoxic and stress effects, e.g., viability (neutral red [NR] uptake, 3-[4,5-dimethylthiozole-2-yl]-2,5,-biphenyl tetrazolium bromide [MTT] dye conversion, and live/dead [L/D]), membrane damage (lactate dehydrogenase leakage), metabolic activity (adenosine triphosphate levels), and detoxification capabilities (GSH content, cytochrome P4501A1/2 [EROD (ethoxyresorufin-o-deethylase)] activity, and MT induction), were measured in both naive (no previous exposure) and Cd2+ preexposed cells. Cadmium uptake increased during a 24-h period. Metallothionein induction occurred in response to both Cd2+ and ZnCl2; however, Cd2+ was the more potent inducer. Both Cd2+ and MT were localized primarily in the cytoplasmic compartment. All biochemical responses, except EROD, showed concentration- response relationships, after 24-h exposure to Cd2+ (ranges 0-3 ppm [26.7 microM]). Cadmium effects were reduced in preexposed cells, indicating adaptive tolerance or increased resistance had occurred. Twenty-four-hour LC50, dose causing death of 50% of the test subjects, values were 0.97, 0.69, and 0.80 ppm (8.7, 6.2, and 7.2 microM) for naive cells and 1.45, 1.21, and 1.39 ppm (12.9, 10.7, and 12.3 microM) for preexposed cells based on the NR, MTT, and L/D assays, respectively. These data indicate that this carcinoma cell line is a useful in vitro model for cadmium toxicity studies.  相似文献   

16.
17.
18.
19.
Arsenite (As(III)), an effective chemotherapeutic agent for the acute promyelocytic leukemia (APL) and multiple myeloma (MM), might be also a promise for the therapy of other cancers, including the solid tumors. However, the molecular bases of arsenite‐induced cytotoxicity in the tumor cells have not been fully defined. In this study, we have disclosed that arsenite effectively induces the apoptotic response in the HepG2 human hepatoma cells by triggering GADD45α induction and the subsequent activation of JNKs/AP‐1 cell death pathway. However, signaling events relating to GADD45α/JNKs/AP‐1 pathway activation have not been observed in HL7702 human diploid hepatic cells under the same arsenite exposure condition. Our results thus have illustrated the selective pro‐apoptotic role of arsenite in the hepatoma cells by activating GADD45α‐dependent cell death pathway whereas with little effect on the normal hepatic cells. The approaches to up‐regulate GADD45α levels might be helpful in improving the chemotherapeutic action of arsenite on certain solid tumors including hepatoma. J. Cell. Biochem. 109: 1264–1273, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号