首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improved assay for measuring intercellular adhesive selectivity of embryonic chick liver cells is described. Three major improvements over earlier procedures are noted: (a) enhanced reproducibility of liver cell-liver cell aggregate adhesion (homotypic adhesion) was achieved; (b) 25-70% of the input cells adhered to the collecting aggregates during the course of routine experiments as compared to the 0.25% in earlier assays. This increase in cellular adhesion suggests that the observed cell pick-up is a characteristic of the majority of the dissociated liver cell population; (c) the rate of intercellular adhesion was increased 1,000-fold. The main feature of the assay is that it measures the tissue adhesive selectivities of the dissociated cell population. Studies were undertaken on three embryonic chick tissues (liver, neural retina, and mesencephalon) to determine the tissue selectivity of intercellular adhesion of these dissociated cell types. Some general properties of liver cell homotypic adhesion have been studied and are reported.  相似文献   

2.
Studies directed at understanding the molecular basis of liver cell homotypic adhesion are presented. An assay which measures the rate of adhesion of isotopically labeled (32PO4) embryonic chick liver cells to liver cell aggregates, described in a companion paper, has been used to investigate the problem of intercellular adhesive selectivity. Cation requirements, the effects of various inhibitors of metabolism and protein synthesis, of chelators (EDTA and EGTA), and the effects of temperature on liver cell adhesion are reported. Two mechanisms of inhibition of liver intercellular adhesion are suggested. One involves destruction of cell-surface adhesion receptors (sensitivity to proteases); the other is an energy-dependent step which may involve alterations in plasma membrane conformation and/or membrane fluidity. Finally, a model is suggested for liver cell-cell adhesion that incorporates the early tissue selectivity of intercellular adhesion previously reported, followed by a multistep process which leads to histogenic aggregation.  相似文献   

3.
4.
5.
The intercellular homotypic adhesive properties of 14 clones derived from a nontumorigenic rat liver epithelial cell line (LEC), derived from neonatal Fischer rats, were examined and compared to those of the hepatoma H4-II-E cell line. Each clone was assayed also for the degree of chromosomal aneuploidy and the ability to grow in soft agar. Over 100-fold differences in adhesive properties were observed among the clones, but no correlation was observed between the degree of aneuploidy in the clones and intercellular adhesive properties. The parent LEC cell line and the clones derived from it were unable to grow in soft agar. The H4-II-E cells showed negligible capacity to reaggregate after dissociation into single cells and these cells readily formed colonies in soft agar. Many of the LEC clones were similar to the H4-II-E cells in their adhesive properties, which suggests that reduced cell-to-cell adhesiveness per se is not a necessary prerequisite of epithelial cells to be able to grow independent of anchorage. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) of concanavalin A (Con A)-binding glycoproteins in the "most adhesive" clone 67 and the "least adhesive" clone 201 showed markedly elevated amounts of acidic 105 and 67-kDa glycoproteins in clone 67. Proteins with similar migration patterns in 2D-PAGE have previously been reported to participate in specific homotypic intercellular adhesion of liver cells. The Con A-binding glycoprotein pattern in H4-II-E cells was markedly different from that of LEC cells with a set of six proteins missing and nine proteins appearing new in the H4-II-E cells. It is suggested that, in addition to identifying known epithelial cell polypeptides, systematic screening of cell surface-associated glycoproteins in normal and transformed epithelial cells in vitro and in vivo may lead to identification of novel polypeptides intimately associated with the transformed phenotype.  相似文献   

6.
E Lazarides  D R Balzer 《Cell》1978,14(2):429-438
The extent of invariance and heterogeneity in desmin, the major component of the muscle form of 100 Å filaments, has been investigated in avian and mammalian muscle and nonmuscle cells with two-dimensional gel electrophoresis and indirect immunofluorescence. Desmin from chick, duck and quail, smooth, skeletal and cardiac muscle cells is resolved into two isoelectric variants, α and β, with each possessing the same charge and electrophoretic mobility in all three avian species irrespective of muscle type. Guinea pig and rat muscle desmin resolves into only one variant; it also possesses the same charge and electrophoretic mobility in the two mammalian species, but it is more acidic and slower in electrophoretic mobility than the two avian variants.In immunofluorescence, desmin is localized together with α-actinin along myofibril Z lines. Antibodies to chick smooth muscle desmin, prepared against the protein purified by preparative SDS gel electrophoresis prior to immunization, cross-react with myofibril Z lines in all three avian species. These antibodies do not cross-react with either rat or guinea pig myofibril Z lines. Similarly, they do not cross-react with avian or mammalian nonmuscle cells grown in tissue culture and known to contain cytoplasmic 100 Å filaments.These results demonstrate that desmin is highly conserved within avian muscle cells and within mammalian muscle cells. It is, however, both biochemically and immunologically distinguishable between avian and mammalian muscle cells, and between muscle and nonmuscle cells. We conclude that there are biochemically and immunologically specific forms of desmin for avian and mammalian muscle cells. Furthermore, within a particular vertebrate species, there are at least two separate classes of 100 Å filaments: the muscle class whose major component is desmin, and the nonmuscle class whose major component is distinct from desmin. Taking into consideration the immunological specificity reported by other laboratories for the 100 Å filaments in glial cells, for neurofilaments and for the epidermal 80 Å keratin filaments, we propose that a given vertebrate species contains at least four major distinguishable classes of 100 Å filaments: muscle 100 Å filaments (desmin filaments), glial filaments, neurofilaments and epidermal keratin filaments.  相似文献   

7.
The adhesive specificity of embryonic sea urchin cells from two species, and the two hybrid crosses between these species was examined by a cell-aggregate collection assay. Cells of normal Lytechinus or Tripneustes embryos were found to adhere to homospecific cell aggregates at a much higher rate than they would adhere to heterospecific aggregates. Hybrid cells adhered to collecting aggregates at an intermediate rate. The observed pattern of hybrid cell adhesion suggested that paternal gene products are capable of modifying cell surface adhesive sites as early as the mesenchyme blastula stage.  相似文献   

8.
A new method is presented for the quantitative analysis of intercellular adhesive specificity. In this assay, two cell types are mixed, one unlabeled and the other labeled with the fluorescent dye, fluorescamine [4-phenylspiro(feran-2[3H],1'-phthalan)-3,3'-dione]. The resulting aggregates are analyzed by fluorescence microscopy to determine the number of labeled and unlabeled cells per aggregate. Random (nonspecific) aggregation was characterized by a binomial distribution, and adhesive specificity was accordingly quantified by the deviation (as determined by a chi-square test) from the calculated binomial distribution. The labeling procedure was simple and rapid, and experiments with 18 different cell types showed that it did not affect cell viability, morphology, rate and extent of adhesion, plating efficiency, and the capability of myogenic cells to undergo terminal differentiation. Most important, assays with morphologically identifiable cell pairs indicated that the fluorescent label neither induced apparent nor destroyed existing adhesive specificity. The most pronounced adhesive specificities were observed with freshly explanted cells from adult tissues and also with mixtures of simian virus 40-transformed and nontransformed BALB/c 3T3 cells. A glucosamine-6-phosphate N-acetylase-deficient mutant 3T3 line (AD6), however, aggregated randomly with parental 3T3 cells. Lectin-resistant mutant Chinese hamster ovary (CHO) cells displayed marginal adhesive specificity when mixed with normal CHO cells.  相似文献   

9.
Male-specific migration of cells from the mesonephric kidney into the embryonic gonad is required for testis formation in the mouse. It is unknown, however, whether this process is specific to the mouse embryo or whether it is a fundamental characteristic of testis formation in other vertebrates. The signalling molecule/s underlying the process are also unclear. It has previously been speculated that male-specific cell migration might be limited to mammals. Here, we report that male-specific cell migration is conserved between mammals (mouse) and birds (quail-chicken) and that it involves proper PDGF signalling in both groups. Interspecific co-cultures of embryonic quail mesonephric kidneys together with embryonic chicken gonads showed that quail cells migrated specifically into male chicken gonads at the time of sexual differentiation. The migration process is therefore conserved in birds. Furthermore, this migration involves a conserved signalling pathway/s. When GFP-labelled embryonic mouse mesonephric kidneys were cultured together with embryonic chicken gonads, GFP+ mouse cells migrated specifically into male chicken gonads and not female gonads. The immigrating mouse cells contributed to the interstitial cell population of the developing chicken testis, with most cells expressing the endothelial cell marker, PECAM. The signalling molecule/s released from the embryonic male chicken gonad is therefore recognised by both embryonic quail and mouse mesonephric cells. A candidate signalling molecule mediating the male-specific cell migration is PDGF. We found that PDGF-A and PDGF receptor-alpha are both up-regulated male-specifically in embryonic chicken and mouse gonads. PDGF signalling involves the phosphotidylinositol 3-kinase (PIK3) pathway, an intracellular pathway proposed to be important for mesonephric cell migration in the mammalian gonad. We found that a component of this pathway, PI3KC2alpha, is expressed male-specifically in developing embryonic chicken gonads at the time of sexual differentiation. Treatment of organ cultures with the selective PDGF receptor signalling inhibitor, AG1296 (tyrphostin), blocked or impaired mesonephric cell migration in both the mammalian and avian systems. Taken together, these studies indicate that a key cellular event in gonadal sex differentiation is conserved among higher vertebrates, that it involves PDGF signalling, and that in mammals is an indirect effect of Sry expression.  相似文献   

10.
Increased myostatin expression, resulting in muscle loss, has been associated with hyperammonemia in mammalian models of cirrhosis. However, there is evidence that hyperammonemia in avian embryos results in a reduction of myostatin expression, suggesting a proliferative myogenic environment. The present in vitro study examines species differences in myotube and liver cell response to ammonia using avian and murine-derived cells. Primary myoblasts and liver cells were isolated from embryonic day 15 and 17 chick embryos to be compared with mouse myoblasts (C2C12) and liver (AML12) cells. Cells were exposed to varying concentrations of ammonium acetate (AA; 2.5, 5, or 10 mM) to determine the effects of ammonia on the cells. Relative expression of myostatin mRNA, determined by quantitative real-time PCR, was significantly increased in AA (10 mM) treated C2C12 myotubes compared to both ages of chick embryonic myotube cultures after 48 h (P < 0.02). Western blot analysis of myostatin protein confirmed an increase in myostatin expression in AA-treated C2C12 myotubes compared to the sodium acetate (SA) controls, while myostatin expression was decreased in the chick embryonic myotube cultures when treated with AA. Myotube diameter was significantly decreased in AA-treated C2C12 myotubes compared to controls, while avian myotube diameter increased with AA treatment (P < 0.001). There were no significant differences between avian and murine liver cell viability, assessed using 2′, 7′- bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein, acetoxymethyl ester, when treated with AA. However, after 24 h, AA-treated avian myotubes showed a significant increase in cell viability compared to the C2C12 myotubes (P < 0.05). Overall, it appears that there is a positive myogenic response to hyperammonemia in avian myotubes compared to murine myotubes, which supports a proliferative myogenic environment.  相似文献   

11.
CTGF/Hcs24 is a multifunctional growth factor that potentiates the growth and differentiation of various cells. Our previous study revealed that the 3'-UTR of mammalian CTGF/Hcs24 mRNA contains a small segment that represses the gene expression in cis fashion. In this study, we isolated and characterized a chicken CTGF/Hcs24 cDNA clone. Chicken ctgf/hcs24 mRNA showed highly conserved homology in the ORF to that of mammalian species, whereas the homology in the 3'-UTR was relatively low. Northern blotting analysis revealed that chicken ctgf/hcs24 mRNA was expressed most strongly in cartilage, and also in brain, lung, heart, but faintly in liver. Thereafter we analyzed the functional potential of the 3'-UTR of ctgf/hcs24 cDNA to regulate its gene expression by reporter gene assay, and found that it repressed gene expression in cis fashion, specifically in avian cells, but not in mammalian cells. Conversely, the mammalian 3'-UTR showed less repressive activity in avian cells than in mammalian cells. Deletion analysis showed that a segment near the polyadenyl tail of the 3'-UTR of chicken ctgf/hcs24 played an important functional role, unlike in the mammalian species. Thus, we uncovered a novel mode of functional conservation of the ctgf/hcs24 3'-UTR among vertebrate species mediated by different factors.  相似文献   

12.
13.
14.
BackgroundCell fusion is a phenomenon that is observed in various tissues in vivo, resulting in acquisition of physiological functions such as liver regeneration. Fused cells such as hybridomas have also been produced artificially in vitro. Furthermore, it has been reported that cellular reprogramming can be induced by cell fusion with stem cells.MethodsFused cells between mammalian fibroblasts and mouse embryonic stem cells were produced by electrofusion methods. The phenotypes of each cell lines were analyzed after purifying the fused cells.ResultsColonies which are morphologically similar to mouse embryonic stem cells were observed in fused cells of rabbit, bovine, and zebra fibroblasts. RT-PCR analysis revealed that specific pluripotent marker genes that were never expressed in each mammalian fibroblast were strongly induced in the fused cells, which indicated that fusion with mouse embryonic stem cells can trigger reprogramming and acquisition of pluripotency in various mammalian somatic cells.ConclusionsOur results can help elucidate the mechanism of pluripotency maintenance and the establishment of highly reprogrammed pluripotent stem cells in various mammalian species.  相似文献   

15.
We have examined the arrangement of integrated avian sarcoma virus (ASV) DNA sequences in several different avian sarcoma virus transformed mammalian cell lines, in independently isolated clones of avian sarcoma virus transformed rat liver cells, and in morphologically normal revertants of avian sarcoma virus transformed rat embryo cells. By using restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, and hybridization with labeled avian sarcoma virus complementary DNA probes, we have compared the restriction enzyme cleavage maps of integrated viral DNA and adjacent cellular DNA sequences in four different mouse and rat cell lines transformed with either Bratislava 77 or Schmidt-Ruppin strains of avian sarcoma virus. The results of these experiments indicated that the integrated viral DNA resided at a different site within the host cell genome in each transformed cell line. A similar analysis of several independently derived clones of Schmidt-Ruppin transformed rat liver cells also revealed that each clone contained a unique cellular site for the integration of proviral DNA. Examination of several morphologically normal revertants and spontaneous retransformants of Schmidt-Ruppin transformed rat embryo cells revealed that the internal arrangement and cellular integration site of viral DNA sequences was identical with that of the transformed parent cell line. The loss of the transformed phenotype in these revertant cell lines, therefore, does not appear to be the result of rearrangement or deletions either within the viral genome or in adjacent cellular DNA sequences. The data presented support a model for ASV proviral DNA integration in which recombination can occur at multiple sites within the mammalian cell genome. The integration and maintenance of at least one complete copy of the viral genome appear to be required for continuous expression of the transformed phenotype in mammalian cells.  相似文献   

16.
Previous studies have demonstrated the presence of two functionally distinct intercellular adhesive systems operating among embryonic chick neural retina cells. These systems differ in their proteolytic sensitivity, protection by calcium against proteolysis, dependence on calcium for function, and in vitro morphogenetic potential. In this report we demonstrate that functional expression of the calcium-dependent adhesive system of embryonic chick neural retina cells is developmentally regulated between Days 7 and 16 of development, whereas the calcium-independent adhesive system is not. Age-dependent changes are described in terms of the ability to produce adhesive-competent cells bearing the calcium-dependent adhesive system and in terms of the responses of these cells during aggregation to perturbations with various drugs. Enzyme and ion combinations other than calcium and typsin are shown to yield calcium-dependent adhesive-competent cells. We also describe the protective effect of calcium on the histological and ultrastructural organization of trypsinized embryonic neural retina tissue. The possible role of the calcium-dependent adhesive system in retinal development is discussed.  相似文献   

17.
18.
Neurons in rodent visual cortex are organized in a salt-and-pepper fashion for orientation selectivity, but it is still unknown how this functional architecture develops. A recent study reported that the progeny of single cortical progenitor cells are preferentially connected in the postnatal cortex. If these neurons acquire similar selectivity through their connections, a salt-and-pepper organization may be generated, because neurons derived from different progenitors are intermingled in rodents. Here we investigated whether clonally related cells have similar preferred orientation by using a transgenic mouse, which labels all the progeny of single cortical progenitor cells. We found that preferred orientations of clonally related cells are similar to each other, suggesting that cell lineage is involved in the development of response selectivity of neurons in the cortex. However, not all clonally related cells share response selectivity, suggesting that cell lineage is not the only determinant of response selectivity.  相似文献   

19.
Oct-4是一种哺乳动物早期胚胎中特异表达的转录因子,它与细胞多能性的维持有关.异源Oct-4基因在早期胚胎中的表达模式尚不明确.构建了一个以完整的牛Oct-4调控区指导GFP表达的转基因结构pOct-4(p)-GFP,通过单精子注射的方法将其导入猪、兔和小鼠的受精卵中,分析其在胚胎发育过程中的表达情况.结果显示:牛Oct-4启动子驱动的GFP基因在3个物种的2-细胞胚胎就已经开始表达,在囊胚期表达加强且只特异表达于内细胞团中,而不表达于滋养层.研究表明:牛的Oct-4启动子在其他物种中也具有表达活性,异源性Oct-4启动子在不同物种的早期胚胎中具有相似的表达模式.  相似文献   

20.
Cylindrical DEAE cellulose anion exchangers (DE-53), generally used for chromatography, were found suitable as a substratum for cultivating cells. Embryonic avian and mammalian cells cultured on DE-53 microcarriers (MC) grow in multilayers, while the same embryonic cells when transformed by avian sarcoma virus (ASV) grow in monolayers. These patterns of cell growth differ from those of normal and transformed cells grown on conventional glass or plastic Petri dishes, or on beaded MC.Cells derived from established cell lines such as BHK, HeLa, L-929, MDCK, and VERO grow in monolayer on these MC. A human adenocarcinoma cell line is the only exception growing in a multilayer form. These results indicate that the ability of cultured cells to grow in multilayers, is determined not only by their state of transformation but also by the properties of the support on which they are cultured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号