首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A high-sucrose (SU) diet increases gluconeogenesis (GNG) in the liver. The present study was conducted to determine the contribution of periportal (PP) and perivenous (PV) cell populations to this SU-induced increase in GNG. Male Sprague-Dawley rats were fed an SU (68% sucrose) or starch (ST, 68% starch) diet for 1 wk, and hepatocytes were isolated from the PP or PV region of the liver acinus. Hepatocytes were incubated for 1 h in the presence of various gluconeogenic substrates, and glucose release into the medium was used to estimate GNG. When incubated in the presence of 5 mM lactate, which enters GNG at the level of pyruvate, glucose release (nmol x h(-1) x mg(-1)) was significantly increased by the SU diet in both PP (84.8 +/- 3.4 vs. 70.4 +/- 2.6) and PV (64.3 +/- 2.5 vs. 38.2 +/- 2.1) cells. Addition of palmitate (0.5 mM) increased glucose release from lactate in PP cells by 11.6 +/- 0.5 and 20.6 +/- 1.5% and in PV cells by 11.0 +/- 4.4 and 51.1 +/- 9.1% in SU and ST, respectively. When cells were incubated with 5 mM dihydroxyacetone (DHA), which enters GNG at the triosephosphate level, glucose release was significantly increased by the SU diet in both cell types. In contrast, glucose release from fructose (0.5 mM) was significantly increased by the SU diet in PV cells only. These changes in glucose release were accompanied by significant increases in the maximal specific activities of glucose-6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK) in both PP and PV cells. These data suggest that the SU diet influences GNG in both PP and PV cell populations. It appears that SU feeding produces changes in GNG via alterations in at least two critical enzymes, G-6-Pase and PEPCK.  相似文献   

3.
The present study was conducted to examine the effect of a single bout of exercise (rodent treadmill, 60 min at 26 m/min, 0% grade) on the gluconeogenic activity of periportal hepatocytes (PP-H) and perivenous hepatocytes (PV-H) in fasted (18 h) rats. Isolated PP-H and PV-H, obtained by selective destruction following liver perfusion with digitonin and collagenase, were incubated with saturating concentrations of alanine (Ala; 20 mM) or a mixture of lactate and pyruvate (Lac+Pyr; 20:2 mM) to determine the glucose production flux (J(glucose)) in the incubation medium. Results show that, in the resting conditions, J(glucose) from all exogenous substrates was significantly higher (P < 0.01) in PP-H than in PV-H. Exercise, compared with rest, resulted in a higher J(glucose) (P < 0.01) from Lac+Pyr substrate in the PV-H but not in the PP-H, resulting in the disappearance of the difference in J(glucose) between PP-H and PV-H. Exercise, compared with rest, led to a higher J(glucose) (P < 0.01) from Ala substrate in both PP-H and PV-H. However, the exercise-induced increase in J(glucose) (gluconeogenic activity) from Ala substrate was higher in PV-H than in PP-H, resulting, as from Lac+Pyr substrate, in the disappearance (P > 0.05) of the difference of J(glucose) between PP-H and PV-H. It is concluded that exercise differentially stimulates the gluconeogenic activity of PV-H to a larger extent than PP-H, indicative of a heterogeneous metabolic response of hepatocytes to exercise.  相似文献   

4.
Periportal hepatocytes isolated by digitonin/collagenase perfusion produced urea faster than did similarly prepared perivenous hepatocytes, in both the presence and the absence of amino acids and various urea precursors. There was no difference between the two cell types in rates of intracellular proteolysis. The initial difference in urea synthesis persisted for 5 days during primary culture, but then gradually disappeared. Our results demonstrate that the periportal dominance of urea formation is unrelated to the currently existing acinar microenvironment in the intact liver, but probably reflects differences in acinar key enzyme activities only slowly converging during culture.  相似文献   

5.
In order to examine the pathways of hepatic glycogen repletion in the periportal and perivenous zones of the liver, [1-13C]glucose (99% enriched) was infused intraduodenally into conscious, 24-h fasted rats for 3 h. The liver was then quickly perfused in situ, and the cytoplasmic contents of the periportal and perivenous hepatocytes were selectively sampled by modification of the dual-digitonin-pulse technique (Quistorff, B., and Grunnet, N. (1987) Biochem. J. 243, 87-95). The 13C isotopic enrichment at each carbon position of the glucosyl units of hepatic glycogen was determined by 13C NMR and that of the C-1 position by gas chromatography-mass spectroscopy. From comparison of hepatic glycogen repleted by direct incorporation of plasma glucose (glucose----glucose-6-P----glucose-1-P----UDP-glucose----glycogen) was calculated to be 29% in the periportal zone and 35% in the perivenous zone, assuming equal glycogen synthetic rates within the two zones. Thus, the majority of glycogen is derived by an indirect route (glucose--------3-carbon unit--------glucose --------UDP-glucose--------glycogen) in both the periportal zone and in the perivenous zone. In conclusion, in a 24-h fasted rat there does not appear to be a major difference between the periportal and perivenous hepatocytes in the percent of glycogen synthesized by the direct pathway following a glucose load.  相似文献   

6.
The influence of transglutaminase 2 (TG2) activity on the proliferative effect of epidermal growth factor (EGF) and on EGF receptor affinity in periportal hepatocytes (PPH) and perivenous hepatocytes (PVH) has been investigated using a primary culture system. PPH and PVH subpopulations have been isolated using the digitonin/collagenase perfusion technique. DNA synthesis was assessed by [3H] thymidine incorporation into hepatocytes. The assay for binding of [125I] EGF to cultured hepatocytes was analysed by Scatchard plot analysis. Pretreatment with the TG2 inhibitor monodansylcadaverine (MDC) greatly increased EGF-induced DNA synthesis in both PPH and PVH. Furthermore, [125I] EGF binding studies in PVH treated with MDC indicated that high-affinity EGF receptor expression was markedly up-regulated, whereas in PPH, there was no significant effect. Treatment with retinoic acid (RA), an inducer of TG2 expression, significantly decreased EGF-induced DNA synthesis in both PPH and PVH. Binding studies in the presence of RA revealed that the high-affinity EGF receptor was down-regulated and completely absent in both PPH and PVH. These results suggest that TG2 was involved in the differential growth capacities of PPH and PVH through down-regulation of high-affinity EGF receptors.  相似文献   

7.
Functional heterogeneity of periportal and perivenous hepatocytes   总被引:4,自引:0,他引:4  
K Jungermann 《Enzyme》1986,35(3):161-180
Periportal and perivenous hepatocytes differ in their content of many key enzymes and subcellular structures. The cells also receive different regulatory signals due to the gradients established during liver passage of oxygen, substrates and hormones. The signal heterogeneity is important not only for short-term regulation of metabolism but also for long-term control, i.e. the induction of liver cell heterogeneity. The zonal heterogeneity changes upon longer lasting physiological and pathological alterations of the metabolic situation such as starvation, diabetes or regeneration after partial hepatectomy; it develops only gradually during the first weeks of postnatal life. The model of 'metabolic zonation' proposes a functional specialization for the two zones: in the periportal zone oxidative energy metabolism with beta-oxidation and amino acid metabolism, ureagenesis, gluconeogenesis, cholesterol synthesis, bile formation and oxidation protection are the predominant activities, and in the perivenous zone glycolysis, liponeogenesis, ketogenesis, glutamine formation and biotransformation are the prevalent processes.  相似文献   

8.
Perivenous and periportal hepatocytes were isolated by the digitonin/collagenase perfusion technique. The specific activity of phosphate-activated glutaminase was 2.33-fold higher in periportal cells than in perivenous cells. Similarly, the relative abundance of glutaminase mRNA was 2.6-fold higher in samples from periportal cells. The distribution of glutaminase activity and mRNA was compared with those for glutamine synthetase (predominantly perivenous) and phosphoenolpyruvate carboxykinase (predominantly periportal). The results suggest that phosphate-activated glutaminase is predominantly expressed in the periportal zone of the liver acinus.  相似文献   

9.
The influence of medium composition on basal and insulin-stimulated glycogenesis was studied in cultured 17-day-old rat fetal hepatocytes, which contain no glycogen at the time of transplantation. Continuous-labeling 14C-glucose experiments were used to determine both glycogen content and glycogen labeling. The specific activity of glucose units in the newly formed glycogen (a) was compared to that of the medium glucose (b): the ratio a/b expresses the contribution of medium glucose to glycogen formation. In standard medium (5.5 mM glucose), this ratio averaged 0.60. Variations of glucose concentration in the medium from 1 to 40 mM were accompanied by a progressive increase in both glycogen content and the ratio a/b (up to 0.80). Supplementation of standard medium with fructose, galactose, glycerol, or lactate-pyruvate decreased the hepatocyte glucose uptake from the medium. Galactose (1 to 5 mM) or lactate-pyruvate (5 mM) enhanced the glycogen content whereas glycerol or fructose (1 to 5 mM) had no effect. The ratio a/b, not modified by glycerol or lactate-pyruvate, was decreased to 0.45 by fructose (5 mM). Galactose at concentrations as low as 1 to 2 mM brought the ratio down to 0.30, indicating that it is a superior precursor of glycogen as compared to glucose. When the hepatocytes were grown in the presence of 10 nM insulin, the glycogen content was constantly higher than in the absence of the hormone (2-fold stimulation). Also the amplitude of the glycogenic effect of insulin was similar whatever the modifications of the medium, whereas ratio a/b and glucose uptake were hardly increased by insulin. Thus several substrates can contribute to glycogen formation (especially galactose) in cultured fetal hepatocytes and the essential effect of insulin is a stimulation of the final step of the glycogenosynthetic pathway.  相似文献   

10.
Summary The isolated liver from 24 h fasted rats was perfused in a non-recirculating manner in the ortho-and retrograde direction with erythrocyte-containing (20% v/v) media to provide adequate oxygenation of the liver. Glucose and/or gluconeogenic precursors were added as substrates. Glycogen formation was determined biochemically and demonstrated histochemically. With glucose as the sole exogenous substrate glycogen was deposited in the perivenous area, with gluconeogenic precursors it was formed in the periportal zone during ortho-and retrograde flow. When glucose and gluconeogenic compounds were offered togethen, glycogen was deposited in both zones. The results cortoborate the model of metabolic zonation predicting that periportal glycogen is synthesized indirectly from gluconeogenic precursors while perivenous glycogen is formed directly from glucose.  相似文献   

11.
The changes in glycogen content and in its rate of synthesis in two-day-old primary cultures of rat hepatocytes were assessed under various conditions. Hepatocytes cultivated in serum-free and hormone-free medium switch from glycogen degradation to glycogen deposition at 10.3 mM glucose. After pretreatment of the cells with glucocorticoids this threshold was reduced, in the absence or presence of insulin, to 5.4 or 1.2 mM glucose, respectively. The rate of glycogen synthesis in the presence of 10 mM glucose was amplified from 5 nmol x h-1 x mg protein-1 to 20 nmol glucose x h-1 x mg protein-1 after pretreatment with triamcinolone. Glucagon pretreatment also significantly increased the subsequent glycogen synthesis rate. Insulin addition accelerated glycogen synthesis about twofold regardless of the pretreatment. The dose-response relationship between insulin concentration and glycogen synthesis rate showed half-maximal effect at 0.62 +/- 0.22 nM (mean +/- S.D.) insulin. Pretreatment of hepatocytes with glucocorticoids, glucagon, insulin or combinations of these hormones did not significantly change the concentration which gives the half-maximal effect.  相似文献   

12.
The isolated liver from 24 h fasted rats was perfused in a non-recirculating manner in the ortho- and retrograde direction with erythrocyte-containing (20% v/v) media to provide adequate oxygenation of the liver. Glucose and/or gluconeogenic precursors were added as substrates. Glycogen formation was determined biochemically and demonstrated histochemically. With glucose as the sole exogenous substrate glycogen was deposited in the perivenous area, with gluconeogenic precursors it was formed in the periportal zone during ortho- and retrograde flow. When glucose and gluconeogenic compounds were offered together, glycogen was deposited in both zones. The results corroborate the model of metabolic zonation predicting that periportal glycogen is synthesized indirectly from gluconeogenic precursors while perivenous glycogen is formed directly from glucose.  相似文献   

13.
14.
The mechanism of the periportal (p.p.) toxicity of allyl alcohol (AlOH) was investigated in p.p. and perivenous (p.v.) hepatocytes isolated by digitonin-collagenase perfusion. The distinct origin of the cell preparations was confirmed by the p.p./p.v. ratios of alanine aminotransferase (p.p./p.v. = 1.8), lactate dehydrogenase (1.3) and glutamine synthetase (0.10). The activity of alcohol dehydrogenase (ADH) was not markedly different in p.p. and p.v. cells. Both types of cells oxidized AlOH at a high but equal rate of about 3 mumol/(min.g cells). Concomitantly with rapid oxidation of 0.7 mM AlOH, glutathione (GSH) was depleted by about 95% and its secretion was completely inhibited in both cell types. Although the GSH content was partially restored during a subsequent 3-h incubation, cellular ATP and K+ content gradually decreased and the leakage of lactate dehydrogenase increased in both types of cells. However, the p.p. cells tended to resist AlOH in vitro better, probably due to their 26% higher GSH content after preincubation with L-methionine. Altering the partial pressure of oxygen in physiological range had no effect on the toxicity of AlOH. The results are contrary to the suggestions that the p.p. location of AlOH liver injury is caused by higher ADH activity or higher oxygen tension in the p.p. zone. Rather, the regiospecificity of the injury may be due to rapid uptake and oxidation of AlOH in the p.p. region.  相似文献   

15.
Stimulation of DNA synthesis by EGF was compared in cultured periportal and perivenous hepatocyte populations. Periportal hepatocytes responded to EGF more sensitive (IC50-values 20 vs 75 ng/ml) and with a higher maximal stimulation (420 vs 290%) than perivenous hepatocytes with respect to both [3H]thymidine incorporation and labeling index. The glutamine synthetase-positive hepatocytes responded much less to EGF than did the perivenous cells in general. The simultaneous presence of insulin increased the sensitivity for EGF predominantly in the periportal hepatocytes. These inherent differences in the growth potential of hepatocytes from different acinar localizations may contribute to different growth patterns across the lobules in normal and regenerating liver.  相似文献   

16.
Intact rat liver cells from the perivenous region were isolated by collagenase perfusion after first destroying the periportal region by a brief portal infusion of digitonin. Periportal cells were isolated after retrograde digitonin infusion. Significantly higher alanine aminotransferase, gamma-glutamyltransferase and lactate dehydrogenase activities and lower glutamate dehydrogenase and pyruvate kinase activities in periportal than in perivenous cells demonstrate marked separation. The high yield allows further characterization in vitro of the cell populations.  相似文献   

17.
1. The activity per mg of microsomal protein of aminopyrine N-demethylase was higher in perivenous (PV) than in periportal (PP) hepatocytes of rat, but when it was expressed per cytochrome P-450 content the difference in the activity was not significant. 2. The activity of 7-ethoxycoumarin O-deethylase, when expressed per mg protein and per P-450 content, was significantly higher in PV than in PP cells. 3. The activities of dimethylnitrosamine(DMNA) N-demethylase and aniline p-hydroxylase were not significantly different between two subpopulations of isolated hepatocytes when either expressed per mg protein or per P-450 content.  相似文献   

18.
Objective:  Recently, we found that transglutaminase 2 (TG2) might be involved in the difference in proliferative capacities between periportal hepatocytes (PPH) and perivenous hepatocytes (PVH) through down-regulation of high-affinity epidermal growth factor receptor (EGFR). However, it is uncertain whether this high-affinity EGFR contributes to the hepatocyte growth signalling pathway. Here, we have investigated the influence of TG2 on EGF-induced EGFR dimerization and its phosphorylation, which are important steps in the hepatocyte proliferative/growth signalling pathway, in PPH and PVH.
Materials and methods:  PPH and PVH were isolated using the digitonin/collagenase perfusion technique. Amounts of TG2, EGFR dimerization and its phosphorylation were determined by Western blot analysis.
Results:  Pretreatment with monodansylcadaverine, an inhibitor of TG2, greatly increased EGF-induced EGFR dimerization and its phosphorylation in PVH compared with PPH. Conversely, treatment with retinoic acid, an inducer of TG2, significantly decreased EGF-induced EGFR dimerization and its phosphorylation with a significant increase in TG2 expression and its catalysed products, isopeptide bonds, in both subpopulations. It was found that EGFR served as a substrate for TG2.
Conclusion:  The present data showed good correlation with our previous data on EGF-induced DNA synthesis and EGFR-binding affinity to EGF. These results suggest that zonal difference in cell growth between PPH and PVH may be caused by down-regulation of EGFR dimerization and subsequent autophosphorylation through TG2-mediated cross-linking of EGFR.  相似文献   

19.
The pathways of glycogen synthesis from glucose were studied using double-isotope procedures in 18-day cultured foetal-rat hepatocytes in which glycogenesis is strongly stimulated by insulin. When the medium containing 4 mM-glucose was supplemented with [2-3H,U-14C]glucose or [3-3H,U-14C]glucose, the ratios of 3H/14C in glycogen relative to that in glucose were 0.23 +/- 0.04 (n = 6) and 0.63 +/- 0.09 (n = 8) respectively after 2 h. This indicates that more than 75% of glucose was first metabolized to fructose 6-phosphate, whereas 40% reached the step of the triose phosphates prior to incorporation into glycogen. The stimulatory effect of 10 nM-insulin on glycogenesis (4-fold) was accompanied by a significant increase in the (3H/14C in glycogen)/(3H/14C in glucose) ratio with 3H in the C-2 position (0.29 +/- 0.05, n = 6, P less than 0.001) or in the C-3 position (0.68 +/- 0.09, n = 8, P less than 0.01) of glucose, whereas the effect of a 12 mM-glucose load (3.5-fold) did not alter these ratios. Fructose (4 mM) displaced [U-14C]glucose during labelling of glycogen in the presence and absence of insulin by 50 and 20% respectively, and produced under both conditions a similar increase (45%) in the (3H/14C in glycogen)/(3H/14C in glucose) ratio when 3H was in the C-2 position. 3-Mercaptopicolinate (1 mM), an inhibitor of gluconeogenesis from lactate/pyruvate, further decreased the already poor labelling of glycogen from [U-14C]alanine, whereas it increased both glycogen content and incorporation of label from [U-14C]serine and [U-14C]glucose with no effect on the relative 3H/14C ratios in glycogen and glucose with 3H in the C-3 position of glucose. These results indicate that an alternative pathway in addition to direct glucose incorporation is involved in glycogen synthesis in cultured foetal hepatocytes, but that insulin preferentially favours the classical direct route. The alternative foetal pathway does not require gluconeogenesis from pyruvate-derived metabolites, contrary to the situation in the adult liver.  相似文献   

20.
Defects in the deposition of glycogen and the regulation of glycogen synthesis in the livers of severely insulin-deficient rats can be reversed, in vivo, within hours of insulin administration. Using primary cultures of hepatocytes isolated from normal and diabetic rats in a serum-free chemically defined medium, the present study addresses the chronic action of insulin to facilitate the direct effects of insulin and glucose on the short term regulation of the enzymes controlling glycogen metabolism. Primary cultures were maintained in the presence of insulin, triiodothyronine, and cortisol for 1-3 days. On day 1 in alloxan diabetic cultures, 10(-7) M insulin did not acutely activate glycogen synthase over a period of 15 min or 1 h, whereas insulin acutely activated synthase in cultures of normal hepatocytes. By day 3 in hepatocytes isolated from alloxan diabetic rats, insulin effected an approximate 30% increase in per cent synthase I within 15 min as was also the case for normal cells. The acute effect of insulin on synthase activation was independent of changes in phosphorylase alpha. Whereas glycogen synthase phosphatase activity could not be shown to be acutely affected by insulin, the total activity in diabetic cells was restored to normal control values over the 3-day culture period. The acute effect of 30 mM glucose to activate glycogen synthase in cultured hepatocytes from normal rats after 1 day of culture was missing in hepatocytes isolated from either alloxan or spontaneously diabetic (BB/W) rats. After 3 days in culture, glucose produced a 50% increase in glycogen synthase activity during a 10-min period under the same conditions. These studies clearly demonstrate that insulin acts in a chronic manner in concert with thyroid hormones and steroids to facilitate acute regulation of hepatic glycogen synthesis by both insulin and glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号