首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Mitogen-activated protein kinases (MAPKs) phosphorylate target proteins in both the cytoplasm and nucleus, and a strong correlation exists between the subcellular localization of MAPK and resulting cellular responses. It was thought that MAPK phosphorylation was always followed by rapid nuclear translocation. However, we and others have found that MAPK phosphorylation is not always sufficient for nuclear translocation in vivo. In the developing Drosophila wing, MAPK-mediated signaling is required both for patterning and for cell proliferation, although the mechanism of this differential control is not fully understood. Here, we show that phosphorylated MAPK (pMAPK) is held in the cytoplasm in differentiating larval and pupal wing vein cells, and we show that this cytoplasmic hold is required for vein cell fate. At the same time, we show that MAPK does move into the nucleus of other wing cells where it promotes cell proliferation. We propose a novel Ras pathway bifurcation in Drosophila and our results suggest a mechanism by which MAPK phosphorylation can signal two different cellular outcomes (differentiation versus proliferation) based on the subcellular localization of MAPK.  相似文献   

5.
6.
7.
p67(PHOX), a cytosolic component of the NADPH oxidase complex, is phosphorylated during neutrophil activation by several agonists. The intracellular signaling pathways leading to its phosphorylation in neutrophils may involve a PKC-dependent pathway and a PKC-independent pathway. Here, we analyzed p67(PHOX) phosphorylation by ERK2 and p38MAPK. Both ERK2 and p38MAPK phosphorylated p67(PHOX) in vitro, with similar K(m) values (10 and 9 microM, respectively). Phosphopeptide mapping indicated that ERK2 and p38MAPK phosphorylate different subgroups of peptides. Using truncated forms of p67(PHOX), we found that the major phosphorylation target site of ERK2 was located in the N-terminal fragment (1-243), while the major phosphorylation target sites of p38MAPK were located in the C-terminal fragment (244-526). Furthermore, an additional peptide, which was not phosphorylated in the intact protein, appeared to be phosphorylated in the isolated C-terminal fragment (aa 244-526). This site may not thus be accessible in the intact protein. Indeed, incubation of the C-terminal fragment (244-526) with different N-terminal fragments (1-243, 1-210, or 1-199) containing the tetratricopeptide-rich region prevented phosphorylation of this C-terminal fragment. ERK1/2 and p38MAPK are also involved in p67(PHOX) phosphorylation in intact neutrophils. Indeed, PD98059 and SB203580, two selective inhibitors of MEK1/2 and p38MAPK, respectively, inhibited p67(PHOX) phosphorylation in fMLP- and PMA-stimulated neutrophils, with additive effects, thus suggesting that they also target different sites in vivo. Furthermore, the major peptides phosphorylated by ERK2 and p38MAPK in vitro were also phosphorylated in fMLP-stimulated neutrophils. Taken together, these results suggest not only that p67(PHOX) is phosphorylated by ERK2 and p38MAPK in vitro and in intact neutrophils on several selective sites but also that a C-terminal phosphorylation site may become accessible after a conformational change of the protein.  相似文献   

8.
Negative feedback is among the key mechanisms for regulating receptor tyrosine kinase (RTK) signaling. Human Sef, a recently identified inhibitor of RTK signaling, encodes different isoforms, including a membrane spanning (hSef-a) and a cytosolic (hSef-b) isoform. Previously, we reported that hSef-b inhibited fibroblast proliferation and prevented the activation of mitogen-activated protein kinase (MAPK), without affecting protein kinase B/Akt or p38 MAPK. Conflicting results were reported concerning hSef-a inhibition of MAPK activation, and the effect of hSef-a on other RTK-induced signaling pathways is unknown. Here we show that, in fibroblasts, similar to hSef-b, ectopic expression of hSef-a inhibited fibroblast growth factor-induced cell proliferation. Unlike hSef-b, however, the growth arrest was mediated via a MAPK-independent mechanism, and was accompanied by elevated p38 MAPK phosphorylation and inhibition of protein kinase B/Akt. In addition, hSef-a, but not hSef-b, mediated apoptosis in fibroblast growth factor-stimulated cells. Chemical inhibitor of p38 MAPK abrogated the effect of hSef-a on apoptosis. In epithelial cells, ectopic expression of hSef-a inhibited the activation of MAPK, whereas down-regulation of endogenous hSef-a significantly increased MAPK activation and accelerated growth factor-dependent cell proliferation. These results indicate that hSef-a is a multifunctional negative modulator of RTK signaling and clearly demonstrate that hSef-a can inhibit the activation of MAPK, although in a cell type-specific manner. Moreover, the differences between the activities of hSef-a and hSef-b suggest that hSef isoforms can control signal specificity and subsequent cell fate by utilizing different mechanisms to modulate RTK signaling.  相似文献   

9.
Neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor, activate Trk receptor tyrosine kinases through receptor dimerization at the cell surface followed by autophosphorylation and recruitment of intracellular signaling molecules. The intracellular pathways used by neurotrophins share many common protein substrates that are used by other receptor tyrosine kinases (RTK), such as Shc, Grb2, FRS2, and phospholipase C-gamma. Here we describe a novel RTK mechanism that involves a 220-kilodalton membrane tetraspanning protein, ARMS/Kidins220, which is rapidly tyrosine phosphorylated in primary neurons after neurotrophin treatment. ARMS/Kidins220 undergoes multiple tyrosine phosphorylation events and also serine phosphorylation by protein kinase D. We have identified a single tyrosine (Tyr(1096)) phosphorylation event in ARMS/Kidins220 that plays a critical role in neurotrophin signaling. A reassembled complex of ARMS/Kidins220 and CrkL, an upstream component of the C3G-Rap1-MAP kinase cascade, is SH3-dependent. However, Tyr(1096) phosphorylation enables ARMS/Kidins220 to recruit CrkL through its SH2 domain, thereby freeing the CrkL SH3 domain to engage C3G for MAP kinase activation in a neurotrophin dependent manner. Accordingly, mutation of Tyr(1096) abolished CrkL interaction and sustained MAPK kinase activity, a response that is not normally observed in other RTKs. Therefore, Trk receptor signaling involves an inducible switch mechanism through an unconventional substrate that distinguishes neurotrophin action from other growth factor receptors.  相似文献   

10.
The oncogenic Wip1 phosphatase (PPM1D) is induced upon DNA damage in a p53-dependent manner and is required for inactivation or suppression of DNA damage-induced cell cycle checkpoint arrest and of apoptosis by dephosphorylating and inactivating phosphorylated Chk2, Chk1, and ATM kinases. It has been reported that arsenic trioxide (ATO), a potent cancer chemotherapeutic agent, in particular for acute promyelocytic leukemia, activates the Chk2/p53 pathway, leading to apoptosis. ATO is also known to activate the p38 MAPK/p53 pathway. Here we show that phosphatase activities of purified Wip1 toward phosphorylated Chk2 and p38 in vitro are inhibited by ATO in a dose-dependent manner. Furthermore, DNA damage-induced phosphorylation of Chk2 and p38 in cultured cells is suppressed by ectopic expression of Wip1, and this Wip1-mediated suppression can be restored by the presence of ATO. We also show that treatment of acute promyelocytic leukemia cells with ATO resulted in induction of phosphorylation and activation of Chk2 and p38 MAPK, which are required for ATO-induced apoptosis. Importantly, this ATO-induced activation of Chk2/p53 and p38 MAPK/p53 apoptotic pathways can be enhanced by siRNA-mediated suppression of Wip1 expression, further indicating that ATO inhibits Wip1 phosphatase in vivo. These results exemplify that Wip1 is a direct molecular target of ATO.  相似文献   

11.
In Saccharomyces cerevisiae, a variety of stresses and aggressions to the cell wall stimulate the activation of the cell wall integrity MAPK pathway, which triggers the expression of a series of genes important for the maintenance of cell wall homeostasis. This MAPK module lies downstream of the Rho1 small GTPase and protein kinase C Pkc1 and consists of MAPKKK Bck1, MAPKKs Mkk1 and Mkk2, and the Slt2 MAPK. In agreement with previous reports suggesting that Mkk1 and Mkk2 were functionally redundant, we show here that both Mkk1 and Mkk2 alone or even chimerical proteins constructed by interchanging their catalytic and regulatory domains are able to efficiently maintain signal transduction through the pathway. Both Mkk1 and Mkk2 are phosphorylated in vivo concomitant to activation of the cell integrity pathway. Interestingly, hyperphosphorylation of the MEKs required not only the upstream components of the pathway, but also a catalytically competent Slt2 MAPK downstream. Active Slt2 purified from yeast extracts was able to phosphorylate Mkk1 and Mkk2 in vitro. We have mapped Ser(50) as a direct phosphorylation target for Slt2 in Mkk2. However, substitution of all (Ser/Thr)-Pro canonical MAPK target sites with alanine did not totally abrogate Slt2-dependent Mkk2 phosphorylation. Mutation or deletion of a conserved MAPK-docking site at the N-terminal extension of Mkk2 precluded its interaction with Slt2 and negatively affected retrophosphorylation. Our data show that the cell wall integrity MAPKKs are targets for their downstream MAPK, suggesting the existence of complex feedback regulatory mechanisms at this level.  相似文献   

12.
alpha-Synuclein affects the MAPK pathway and accelerates cell death   总被引:9,自引:0,他引:9  
Insoluble alpha-synuclein accumulates in Parkinson's disease, diffuse Lewy body disease, and multiple system atrophy. However, the relationship between its accumulation and pathogenesis is still unclear. Recently, we reported that overexpression of alpha-synuclein affects Elk-1 phosphorylation in cultured cells, which is mainly performed by mitogen-activated protein kinases (MAPKs). We further examined the relationship between MAPK signaling and the effects of alpha-synuclein expression on ecdysone-inducible neuro2a cell lines and found that cells expressing alpha-synuclein had less phosphorylated MAPKs. Moreover, they showed significant cell death when the concentration of serum in the culture medium was reduced. Under normal serum conditions, the addition of the MAPK inhibitor U0126 also caused cell death in alpha-synuclein-expressing cells. Transfection of constitutively active MEK-1 resulted in MAPK phosphorylation in alpha-synuclein-expressing cells and improved cell viability even under reduced serum conditions. Thus, we conclude that alpha-synuclein regulates the MAPK pathway by reducing the amount of available active MAPK. Our findings suggest a mechanism for pathogenesis and thus offer therapeutic insight into synucleinopathies.  相似文献   

13.
The little R cell that could   总被引:5,自引:0,他引:5  
Drosophila eye development provides an excellent model system to study the role of inter-cellular signaling in the specification of unique cell fates. Behavioral screens by Benzer and his colleagues led to the identification of a gene, Sevenless, a receptor tyrosine kinase (RTK) receptor, required for the specification of the UV sensitive R7 cell. Genetic analysis further showed that the Ras/Raf/MAPK pathway function downstream of Sevenless in the specification of R7 fate. Signaling mediated by another RTK, EGFR and Notch have also been shown to function in either an antagonistic or a synergistic manner in the specification of cell fate during eye development. In some instances, these pathways are linked in a sequential manner by the regulation of the expression of Notch ligand, Delta by EGFR, while in others, these pathways function in a combinatorial fashion on enhancer elements to control target gene expression. In this review, we highlight the elegant genetic strategies used by several laboratories in early elucidation of the Sevenless pathway which helped link the RTK receptor to the Ras/Raf/MAPK cascade and discuss how EGFR and Notch signaling pathways are used in a reiterative manner and by combining in different modes, generate sufficient diversity required for the specification of unique cell fates.  相似文献   

14.
The phosphatidylinositide-3-OH kinase/3-phospho-inositide-dependent protein kinase-1 (PDK1)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. Despite their importance, however, the cross-talk between these two pathways has not been fully understood. Here we report that PDK1 promotes MAPK activation in a MEK-dependent manner. In vitro kinase assay revealed that the direct targets of PDK1 in the MAPK pathway were the upstream MAPK kinases MEK1 and MEK2. The identified PDK1 phosphorylation sites in MEK1 and MEK2 are Ser222 and Ser226, respectively, and are known to be essential for full activation. To date, these sites are thought to be phosphorylated by Raf kinases. However, PDK1 gene silencing using small interference RNA demonstrates that PDK1 is associated with maintaining the steady-state phosphorylated MEK level and cell growth. The small interference RNA-mediated down-regulation of PDK1 attenuated maximum MEK and MAPK activities but could not prolong MAPK signaling duration. Stable and transient expression of constitutively active MEK1 overcame these effects. Our results suggest a novel cross-talk between the phosphatidylinositide-3-OH kinase/PDK1/Akt pathway and the Raf/MEK/MAPK pathway.  相似文献   

15.
The objective of this study was to understand the mechanism of action of nitric oxide (NO) in the heart by determining whether nitric oxide (NO) released from sodium nitroprusside (SNP) induces p38 mitogen activated protein kinase (p38 MAPK) phosphorylation and whether this is mediated through a cyclic GMP (cGMP)/protein kinase G (PKG) pathway. p38 MAPK activation was examined by Western blotting of whole cell lysates of embryonic chick cardiomyocytes with antibodies specific to the native or phosphorylated forms of p38 MAPK. SNP, 1 mM, which released significant amounts of NO as determined by Griess reaction, induced p38 MAPK phosphorylation that was apparent within 10 min, was significantly (p<0.05) greater than control at 60 min and remained higher than initial levels up to the 4 h end point of the experiment. This could not be attributed to hydrogen peroxide release from SNP as catalase did not affect SNP-induced p38 MAPK phosphorylation. SB202190, a relatively selective inhibitor of p38 MAPK, mainly p38alpha MAPK, inhibited SNP-induced p38 MAPK phosphorylation. SNP-induced p38 MAPK phosphorylation was not altered by pre-treatment with the PKG inhibitor KT 5823 or by ODQ a potent and selective inhibitor of NO-sensitive guanylyl cyclase. p38 MAPK phosphorylation was not induced by the cell permeable cGMP analogue, 8-Br-cGMP. In summary, considering that new therapeutic strategies aimed at NO and p38 MAPK are being considered for myocardial injury and heart failure, these data demonstrate that SNP induces p38 MAPK phosphorylation through a pathway that is independent of NO-induced activation of cGMP/PKG pathways and suggest that non cGMP/PKG regulatory proteins leading to p38 MAPK phosphorylation merit further investigation to address this therapeutic target.  相似文献   

16.
MAP kinase (MAPK) signal transduction cascades are conserved eukaryotic pathways that modulate stress responses and developmental processes. In a recent report we have identified novel Arabidopsis MAPKK/MAPK/Substrate signaling pathways using microarrays containing 2,158 unique Arabidopsis proteins. Subsequently, several WRKY and TGA targets phosphorylated by MAPKs were verified in planta. We have also reported that specific MAPKK/MAPK modules expressed in Nicotiana benthamiana induced a cell death phenotype related to the immune response. We have generated a MAPK phosphorylation network based on our protein microarray experimental data. Here we further analyze our network by integrating phosphorylation and gene expression information to identify biologically relevant signaling modules. We have identified 108 phosphorylation events that occur among 96 annotated genes with highly similar pairwise expression profiles. Our analysis brings a new perspective on MAPK signaling by revealing new relationships between components of signaling pathways.Key words: MAPK, protein microarray, network, cell death, co-expression, signaling  相似文献   

17.
Inducible cAMP early repressor (ICER) is an important mediator of cAMP antiproliferative activity that acts as a putative tumor suppressor gene product. In this study, we examined the regulation of ICER protein by phosphorylation and ubiquitination in human choriocarcinoma JEG-3 and mouse pituitary AtT20 cells. We found that cAMP stabilized ICER protein by inhibiting the mitogen-activated protein kinase (MAPK) cascade. Activation of the MAPK pathway increased ICER phosphorylation. ICER phosphorylation was abrogated by inhibition of the MAPK pathway either by cAMP or directly by the MAPK inhibitor PD098059. The MAPKs extracellular signal-regulated kinases 1 and 2 physically interact with ICER and mediated the phosphorylation of ICER on a critical serine residue (Ser-41). A mutant form of ICER in which Ser-41 was substituted by alanine had a half-life 4-5 h longer than its wild-type counterpart. This alteration in stability was due to the inability of the Ser-41-mutant ICER to be efficiently ubiquitinated and degraded via the ubiquitin-proteasome pathway. These results present a novel cell signaling cross-talk mechanism at the cell nucleus between the MAPK and cAMP pathways, whereby MAPK targets a repressor of the cAMP-dependent gene expression for ubiquitination and proteasomal degradation.  相似文献   

18.
19.
Extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN) is a cell surface glycoprotein overexpressed in many solid tumors. In addition to its ability to stimulate stromal MMP expression, tumor-associated EMMPRIN also induces vascular endothelial growth factor (VEGF) expression. To explore the underlying signaling pathways used by EMMPRIN, we studied the involvement of phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein kinase (MAPK), JUN, and p38 kinases in EMMPRIN-mediated VEGF regulation. Overexpression of EMMPRIN in MDA-MB-231 breast cancer cells stimulated the phosphorylation of only Akt and MAPKs but not that of JUN and p38 kinases. Conversely, inhibition of EMMPRIN expression resulted in suppressed Akt and MAPK phosphorylation. Furthermore, the PI3K-specific inhibitor LY294002 inhibited VEGF production by EMMPRIN-overexpressing cells in a dose- and time-dependent manner. On the other hand, the MAPK inhibitor U0126 did not affect VEGF production. In vivo, EMMPRIN-overexpressing tumors with elevated VEGF expression had a high level of phosphorylation of Akt and MAPK. Finally, when fibroblast cells were treated with recombinant EMMPRIN, Akt kinase but not MAPK was phosphorylated concomitant with an increase in VEGF production. Both the activation of Akt kinase and the induction of VEGF were specifically inhibited with a neutralizing antibody to EMMPRIN. Our results show that in both tumor and fibroblast cells EMMPRIN regulates VEGF production via the PI3K-Akt pathway but not via the MAPK, JUN, or p38 kinase pathways.  相似文献   

20.
Nir R  Grossman R  Paroush Z  Volk T 《PLoS genetics》2012,8(3):e1002632
Drosophila melanogaster Held Out Wings (HOW) is a conserved RNA-binding protein (RBP) belonging to the STAR family, whose closest mammalian ortholog Quaking (QKI) has been implicated in embryonic development and nervous system myelination. The HOW RBP modulates a variety of developmental processes by controlling mRNA levels and the splicing profile of multiple key regulatory genes; however, mechanisms regulating its activity in tissues have yet to be elucidated. Here, we link receptor tyrosine kinase (RTK) signaling to the regulation of QKI subfamily of STAR proteins, by showing that HOW undergoes phosphorylation by MAPK/ERK. Importantly, we show that this modification facilitates HOW dimerization and potentiates its ability to bind RNA and regulate its levels. Employing an antibody that specifically recognizes phosphorylated HOW, we show that HOW is phosphorylated in embryonic muscles and heart cardioblasts in vivo, thus documenting for the first time Serine/Threonine (Ser/Thr) phosphorylation of a STAR protein in the context of an intact organism. We also identify the sallimus/D-titin (sls) gene as a novel muscle target of HOW-mediated negative regulation and further show that this regulation is phosphorylation-dependent, underscoring the physiological relevance of this modification. Importantly, we demonstrate that HOW Thr phosphorylation is reduced following muscle-specific knock down of Drosophila MAPK rolled and that, correspondingly, Sls is elevated in these muscles, similarly to the HOW RNAi effect. Taken together, our results provide a coherent mechanism of differential HOW activation; MAPK/ERK-dependent phosphorylation of HOW promotes the formation of HOW dimers and thus enhances its activity in controlling mRNA levels of key muscle-specific genes. Hence, our findings bridge between MAPK/ERK signaling and RNA regulation in developing muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号