首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee CS 《Molecules and cells》2000,10(6):723-727
The mechanisms of anticancer activity of 2,5-diaziridinyl-1,4-benzoquinone (DZQ) are believed to involve the alkylation of guanine and adenine bases. In this study, it has been investigated whether bacterial and mammalian 3-methyladenine-DNA glycosylases are able to excise DZQ-DNA adduct with a differential substrate specificity. DZQ-induced DNA adduct was first formed in the radiolabeled restriction enzyme DNA fragment, and excision of the DNA adduct was analyzed following treatment with homogeneous 3-methyladenine-DNA glycosylase from E. coli, rat, and human, respectively. Abasic sites generated by DNA glycosylases were cleaved by the associated lyase activity of the E. coli formamidopyrimidine-DNA glycosylase. Resolution of cleaved DNA on a sequencing gel with Maxam-Gilbert sequencing reactions showed that DZQ-induced adenine and guanine adducts were very good substrates for bacterial and mammalian enzymes. The E. coli enzyme excises DZQ-induced adenine and guanine adducts with similar efficiency. The rat and human enzymes, however, excise the adenine adduct more efficiently than the guanine adduct. These results suggest that the 3-methyladenine-DNA glycosylases from different origins have differential substrate specificity to release DZQ-DNA lesions. The use of 3-methyladenine-DNA glycosylase incision analysis could possibly be applied to quantify a variety of DNA adducts at the nucleotide level.  相似文献   

2.
The mechanisms of anticancer activity of 2,5-diaziridinyl-1,4-benzoquinone (DZQ) are believed to involve the alkylation of guanine and adenine bases. In this study, it has been investigated whether bacterial and mammalian 3-methyladenine-DNA glycosylases are able to excise DZQ-DNA adduct with a differential substrate specificity. DZQ-induced DNA adduct was first formed in the radiolabeled restriction enzyme DNA fragment, and excision of the DNA adduct was analyzed following treatment with homogeneous 3-methyladenine-DNA glycosylase from E. coli, rat, and human, respectively. Abasic sites generated by DNA glycosylases were cleaved by the associated lyase activity of the E. coli formami-dopyrimidine-DNA glycosylase. Resolution of cleaved DNA on a sequencing gel with Maxam-Gilbert sequencing reactions showed that DZQ-induced adenine and guanine adducts were very good substrates for bacterial and mammalian enzymes. The E. coli enzyme excises DZQ-induced adenine and guanine adducts with similar efficiency. The rat and human enzymes, however, excise the adenine adduct more efficiently than the guanine adduct. These results suggest that the 3-methyladenine-DNA glycosylases from different origins have differential substrate specificity to release DZQ-DNA lesions. The use of 3-methyladenine-DNA glycosylase incision analysis could possibly be applied to quantify a variety of DNA adducts at the nucleotide level.  相似文献   

3.
A DNA methyltransferase partly purified from human placenta has been tested on a variety of synthetic polydeoxynucleotides. The results showed that: the enzyme is most active as a 'maintenance' or 'hemi-' methylase but also has some de novo methylating activity; the presence or absence of A or T in the substrate strand has little influence on maintenance or de novo activity, while polymers containing C but not G in the same strand are poor de novo substrates and bind poorly to the enzyme; single-stranded polymers are about as good substrates as double-stranded ones, and the effects of nucleotide composition (particularly G and mC content) on enzyme activity with single strands are similar to those with double-stranded polymers; strands in which all the cytosines are methylated bind the enzyme well. A mechanism is suggested involving two different sites on the enzyme that recognize CG and mCG, and which rationalizes the activity of eukaryotic DNA methyltransferases towards single-stranded DNA.  相似文献   

4.
Methyltransferases form a large class of enzymes, most of which use S-adenosylmethionine as the methyl donor. In fact, S-adenosylmethionine is second only to ATP in the variety of reactions for which it serves as a cofactor. Several methods to measure methyltransferase activity have been described, most of which are applicable only to specific enzymes and/or substrates. In this work we describe a sensitive liquid chromatography/mass spectroscopy-based methyltransferase assay. The assay monitors the conversion of S-adenosylmethionine to S-adenosylhomocysteine and can be applied to any methyltransferase and substrate of interest. We used the well-characterized enzyme catechol O-methyltransferase to demonstrate that the assay can monitor activity with a variety of substrates, can identify new substrates, and can be used even with crude preparation of enzyme. Furthermore, we demonstrate the utility of the assay for kinetic characterization of enzymatic activity.  相似文献   

5.
Calcium-independent phospholipase A(2): structure and function   总被引:4,自引:0,他引:4  
The classical Ca(2+)-independent phospholipase A(2) enzyme, now known as Group VIA PLA(2), was initially purified and characterized from the P388D(1) macrophage-like cell line. The corresponding cDNA was subsequently cloned from a variety of sources, and it is now known that multiple splice variants of the enzyme are expressed, some of which may act as negative regulators of the active enzyme. Group VIA PLA(2) has a consensus lipase motif (GTSTG) containing the catalytic serine, is 85-88 kDa, and exists in an aggregated form. The enzyme contains multiple ankyrin repeats, which may play a role in oligomerization. The Group VIA enzyme exhibits lysophospholipase activity as well as phospholipase A(2) activity, and it is capable of hydrolyzing a wide variety of phospholipid substrates. A major function of Group VIA PLA(2) is to mediate phospholipid remodeling, but the enzyme may play other roles as well. Other Ca(2+)-independent PLA(2) enzymes have more recently been identified, and it may be possible to discriminate between the various Ca(2+)-independent PLA(2) enzymes based on sequence or inhibitor-sensitivity. However, the physiological functions of the newly identified enzymes have yet to be elucidated.  相似文献   

6.
7.
In principle, competitive inhibitors of glyoxalase I that also serve as substrates for the thioester hydrolase glyoxalase II might function as tumor-selective anti-cancer agents, given the role of these enzymes in removing cytotoxic methylglyoxal from cells and the observation that glyoxalase II activity is abnormally low in some types of cancer cells. In support of the feasibility of this anticancer strategy, an inhibitor of this type has been synthesized by a thioester-interchange reaction between glutathione and N-hydroxy-N-methylcarbamate 4-chlorophenyl ester to give S-(N-hydroxy-N-methylcarbamoyl)glutathione (1). This compound was designed to be a tight-binding inhibitor of glyoxalase I, on the basis of its stereoelectronic similarity to the enediol(ate) intermediate that forms along the reaction pathway of this enzyme. Indeed, 1 is a competitive inhibitor of yeast glyoxalase I, with an inhibition constant (Ki = 68 microM) that is approximately 30-fold lower than that reported for S-D-lactoylglutathione and approximately 7-fold lower than the Km for glutathione-methylglyoxal thiohemiacetal. In addition, 1 is a substrate for bovine liver glyoxalase II, with a Km (0.48 mM) approximately equal to that of the normal substrate S-D-lactoyglutathione and a kcat approximately 2 x 10(-5)-fold that of the normal substrate. Membrane transport studies show that 1 can be delivered into human erythrocytes (used here as a model cell) either by direct diffusion of 1 across the cell membrane or by more rapid diffusion of the glycylethyl ester of 1 across the cell membrane, followed by the catalyzed hydrolysis of the ester to give 1.  相似文献   

8.
Quantifying oxygen radicals that arise during the redox cycling of quinone-containing anticancer agents such as diaziquone (AZQ) has been difficult, as has been their detection at low drug concentrations. This is due to the fact that EPR spin trapping, the method most often used for *OH detection, requires the use of high drug concentrations. Using a new highly sensitive technique that employs a fluorescamine-derivatized nitroxide, we show that low levels of NADPH-cytochrome P450 reductase (4.25 microg/ml) catalyze the production of hydroxyl radicals at very low, clinically relevant AZQ concentrations. Thus, at this enzyme concentration, we were able to detect a rate of 0.10 nM s(-1) hydroxyl radical production by 5 microM AZQ, a clinically relevant concentration. The Michaelis-Menten constants for AZQ-mediated hydroxyl radical production are: K(M) = 10.7 +/- 1.4 microM, and V(max) = 5.2 +/- 0.9 x 10(-8) M s(-1) (mg protein)(-1). Experiments employing catalase, superoxide dismutase, and NADPH-cytochrome P450 reductase, confirm the previously deduced conclusions from high drug concentrations, that is, that at low concentrations, AZQ acts to shuttle reducing equivalents from the enzyme to oxygen, thus generating the redox cycle. The data presented here suggest that the levels and locations of redox active metal ions may be the principal controlling factor in the pathway of AZQ activity that involves oxidative stress.  相似文献   

9.
The structure-specific ChSI nuclease from wheat (Triticum vulgare) chloroplast stroma has been previously purified and characterized in our laboratory. It is a single-strand-specific DNA and RNA endonuclease. Although the enzyme has been initially characterized and used as a structural probe, its biological function is still unknown. Localization of the ChSI enzyme inside chloroplasts, possessing their own DNA that is generally highly exposed to UV light and often affected by numerous redox reactions and electron transfer processes, might suggest, however, that this enzyme could be involved in DNA repair. The repair of some types of DNA damage has been shown to proceed through branched DNA intermediates which are substrates for the structure-specific DNA endonucleases. Thus we tested the substrate specificity of ChSI endonuclease toward various branched DNAs containing 5' flap, 5' pseudoflap, 3' pseudoflap, or single-stranded bulged structural motifs. It appears that ChSI has a high 5' flap structure-specific endonucleolytic activity. The catalytic efficiency (k(cat)/K(M)) of the enzyme is significantly higher for the 5' flap substrate than for single-stranded DNA. The ChSI 5' flap activity was inhibited by high concentrations of Mg(2+), Mn(2+), Zn(2+), or Ca(2+). However, low concentrations of divalent cations could restore the loss of ChSI activity as a consequence of EDTA pretreatment. In contrast to other known 5' flap nucleases, the chloroplast enzyme ChSI does not possess any 5'-->3' exonuclease activity on double-stranded DNA. Therefore, we conclude that ChSI is a 5' flap structure-specific endonuclease with nucleolytic activity toward single-stranded substrates.  相似文献   

10.
The alkyladenine DNA glycosylase (AAG) has been cloned from mouse and humans. AAG knock out mouse cells are sensitized to a variety of alkylating and cross-linking agents suggesting AAG is active on a variety of substrates. In humans, two isoforms have been characterized that are generated by alternative splicing and contain either exon 1a or 1b (hAAG1 or hAAG2). In this study, we examine the ability of the both known isoforms of human AAG (hAAG) to contribute to survival of Escherichia coli from treatments with simple alkylating agents and cross-linking alkylating agents. Our results show that hAAG is effective at repairing methyl lesions when expressed in E. coli, but is unable to afford increased resistance to alkylating agents producing larger alkyl lesions such as ethyl lesions or lesions produced by the cross-linking alkylating agents N,N'-bis-chloroethyl-N-nitrosourea (BCNU), N-(2-chloroethyl)-N-nitrosourea (CNU) or mitomycin C. In the case of CNU, expression of hAAG causes increased sensitivity rather than resistance, suggesting deleterious effects of hAAG activity. We also demonstrate that there are no apparent differences between the two isoforms of hAAG when recovery from damage produced by all alkylating agents is tested.  相似文献   

11.
An alkaline proteinase, previously identified in rat liver and heart, has been purified from the soluble fraction of human erythrocytes. The proteinase has an apparent molecular weight of 600 000 and is composed of eight subunits with molecular weights ranging from 32 000 to 21 000. The proteinase degrades both protein and synthetic peptide substrates with a broad pH optimum of 7.5-11.0. Among the synthetic peptides tested, tripeptides with arginine at the P1 position (e.g. Z-Val-Leu-Arg-4-methoxy-2-napthylamine and Boc-Leu-Gly-Arg-4-methylcoumarin-7-amide) are particularly good substrates. The proteinase appears to be sulfhydryl-dependent and is inhibited completely by mersalyl acid and by hemin; inhibitors of serine and metallo-type proteinases have no effect on proteinase activity. Interestingly, a variety of other proteinase inhibitors such as leupeptin, chymostatin and N-ethylmaleimide failed to completely inhibit protein-hydrolyzing activities of the enzyme. These results indicate that these activities may be accounted for by at least two different catalytic sites. Proteinase activity is stable in the presence of 1 M urea, 0.5% Triton X-100 or 0.03% SDS and is not affected by ATP. Based on the high molecular weight and sulfhydryl-dependence, we have named this proteinase macropain.  相似文献   

12.
The central role of the proteasome in controlling the expression of regulators of cell proliferation and survival has led to interest in developing proteasome inhibitors as novel anticancer agents. In vitro and in vivo studies have shown that proteasome inhibitors have activity against a variety of tumor types. One of these agents, PS-341, has been tested in phase I trials in a variety of tumor types; in these trials, PS-341 treatment was well tolerated and preliminary evidence of biological activity was observed in some patients. Phase II trials in several hematological malignancies and solid tumor types are now in progress.  相似文献   

13.
The inhibition of glyoxalase I enzyme to increase cellular levels of methylglyoxal has been developed as a rationale for the production of anticancer agents. Synthesis of a peptidomimetic analog of the previously prepared potent glyoxalase inhibitor, S-(p-bromobenzyl)glutathione (PBBG), was accomplished by inserting a urea linkage, NH-CO-NH, to replace the gamma-glutamyl peptide bond. Thus, the target compound, gamma-(L-gamma-azaglutamyl)-S-(p-bromobenzyl)-L-cysteinylglycine 6, was a potent inhibitor of glyoxalase I with almost no loss of activity when compared to PBBG. However, unlike PBBG, 6 was completely resistant to enzymatic degradation by kidney homogenate or by purified gamma-glutamyltranspeptidase enzyme.  相似文献   

14.
An enzyme present in mouse brain cytosol cleaves C-terminal dipeptides from substrates including ACTH-(7-10) (Phe-Arg-Trp-Gly), and des-Tyr-[Met]- and des-Tyr-[Leu]enkephalin. By means of ion-exchange chromatography and gel filtration, the peptidase was purified to a specific activity of 1570 times that of brain homogenate. At this purification, a second peptidase, which hydrolyzes Trp-Gly and other peptides [M. E. A. Reith and A. Neidle (1979) Biochem. Biophys. Res. Commun. 90, 794-800] was still present, but could be removed by preparative polyacrylamide gel electrophoresis. The des Tyr-enkephalin-cleaving enzyme has a molecular weight of about 85,000 and a pH optimum of 7.8. It is inhibited by metal-chelating and sulfhydryl reagents. The enzyme has a strong preference for substrates with an aromatic residue in the position adjacent to the C-terminal amino acid, although some peptides meeting this criterion were competitive inhibitors rather than substrates. Peptides with less than four residues were inactive and, in general, tetrapeptides were found to be more reactive than larger analogs, when peptides with common C-terminal sequences were compared. The peptidyl dipeptidase, which has not been described previously, can be readily distinguished from angiotensin-converting enzyme (EC 3.4.15.1) and from neutral endopeptidase (EC 3.4.24.11) by its subcellular localization, substrate specificity, and response to inhibitors. It was suggested that peptidyl dipeptidase-B (PDP-B, EC 3.4.15.-) would be an appropriate name for the enzyme. PDP-B is widely distributed among mouse tissues.  相似文献   

15.
Soluble 3′,5′-nucleotide phosphodiesterase (PDE) activity is described in chicken epiphyseal and articular cartilage. Kinetic studies of these enzymes demonstrate a high and low Km for the substrates, adenosine 3′,5′-cyclic monophosphate (cyclic AMP) and guanosine 3′,5′-cyclic monophosphate (cyclic GMP). Epiphyseal and articular PDE activities are inhibited by those anti-inflammatory agents which are potent inhibitors of the enzyme, prostaglandin synthetase (PS). Specificity of this inhibition is indicated by the activity of these agents against the low Km enzyme. Other anti-inflammatory agents with significantly less potency as PS inhibitors or with no activity against prostaglandin synthetase are found to be either inactive or relatively less potent as inhibitors of cartilage PDE activity. A variety of other anti-inflammatory or anti-rheumatic agents, which are not known to affect prostaglandin synthetase activity, are poor inhibitors of cartilage PDE activity. These data provide insight into the mechanism of action of certain anti-inflammatory agents and into the relationships between prostaglandins and inflammatory reactions.  相似文献   

16.
Following our research for human dihydroorotate dehydrogenase (hDHODH) inhibitors as anticancer agents, herein we describe 3D QSAR-based design, synthesis and in vitro screening of 2-,4,-6-, and/or 7-substituted quinoline derivatives as hDHODH inhibitors and anticancer agents. We have designed 2-,4,-6-, and/or 7-substituted quinoline derivatives and predicted their hDHODH inhibitory activity based on 3D QSAR study on 45 substituted quinoline derivatives as hDHODH inhibitors, and also predicted toxicity. Designed compounds were docked into the binding site of hDHODH. Designed compounds which showed good predictive activity, no toxicity, and good docking score were selected for the synthesis, and in vitro screening as hDHODH inhibitors in an enzyme inhibition assay, and anticancer agents in MTT assay against cancer cell lines (HT-29 and MDA-MB-231). Synthesized compounds 7 and 14 demonstrated IC50 value of 1.56?µM and 1.22?µM, against hDHODH, respectively, and these are our lead compounds for the development of new hDHODH inhibitors and anticancer agents.  相似文献   

17.
Cationic defence peptides show high therapeutic potential as antimicrobial and anticancer agents. Some of these peptides carry a C-terminal amide moiety which has been shown to be required for antimicrobial activity. However, whether this is a general requirement or whether C-terminal amidation is required for the anticancer activity of defence peptides is unclear. In response, this study analyses the toxicity of a series of C-terminally amidated defence peptides and their non-amidated isoforms to normal fibroblast cells, a variety of tumour cells and bacterial cells. The toxicities of these peptides to microbial and cancer cells were generally <200 μM. Peptides were either unaffected by C-terminal amidation or showed up to 10-fold decreases or increases in efficacy. However, these peptides all showed toxicity to normal fibroblast cells with levels (generally <150 μM) that were comparable to those of their antimicrobial and anticancer activities. In contrast to previous claims which have been based on analysis of single amidation events, the results of this study clearly show that the C-terminal amidation of defence peptides has a variable effect on their antimicrobial and anticancer efficacy and no clear effect on their selectivity for these cell types.  相似文献   

18.
Fluorescence-based melting assays for studying quadruplex ligands   总被引:2,自引:0,他引:2  
The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomeres and telomerase are relevant targets in oncology, and telomere ligands and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we have analysed the FRET method used to measure the stabilization and selectivity of quadruplex ligands towards the human telomeric G-quadruplex. The stabilization value depends on the nature of the fluorescent tags, the incubation buffer, and the method chosen for T(m) calculation, complicating a direct comparison of the results obtained by different laboratories.  相似文献   

19.
Li JY  Chen LL  Cui YM  Luo QL  Gu M  Nan FJ  Ye QZ 《Biochemistry》2004,43(24):7892-7898
Methionine aminopeptidase (MetAP) carries out an essential posttranslational modification of nascent proteins by removing the initiator methionine and is recognized as a potential target for developing antibacterial, antifungal, and anticancer agents. We have established an Escherichia coli expression system for human type I MetAP (HsMetAP1) and characterized the full length HsMetAP1 and its N-terminal-truncated mutants HsMetAP1(Delta1-66) and HsMetAP1(Delta1-135) for hydrolysis of several thiopeptolide and peptide substrates and inhibition by a series of nonpeptidic inhibitors. Although the N-terminal extension with zinc finger motifs in HsMetAP1 is not required for enzyme activity, it has a significant impact on the interaction of the enzyme with substrates and inhibitors. In hydrolysis of the thiopeptolide substrates, a relaxation of stringent specificity for the terminal methionine was observed in the truncated mutants. However, this relaxation of specificity was not detectable in hydrolysis of tripeptide or tetrapeptide substrates. Several nonpeptidic inhibitors showed potent inhibition of the mutant HsMetAP1(Delta1-66) but exhibited only weak or no inhibition of the full length enzyme. With the recombinant HsMetAP1 available, we have identified several MetAP inhibitors with submicromolar inhibitory potencies against E. coli MetAP (EcMetAP1) that do not affect HsMetAP1. These results have demonstrated the possibility of developing MetAP inhibitors as antibacterial agents with minimum human toxicity. In addition, micromolar inhibitors of HsMetAP1 identified in this study can serve as tools for investigating the functions of HsMetAP1 in physiological and pathological processes.  相似文献   

20.
15-Hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes NAD(+)-dependent oxidation of 15(S)-hydroxyl group of prostaglandins and has been considered a key enzyme involved in biological inactivation of prostaglandins. This enzyme is markedly induced by androgens in hormone-sensitive human prostate cancer cells (Tong M., Tai H. H. Biochem Biophys Res Commun 2000; 276: 77-81) and may be involved in tumorigenesis. Inhibition of this enzyme may be of value in anticancer therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) which inhibit cyclooxygenases (COXs) have been shown to be chemopreventive in epidemiological and animal-model studies. However, chemoprevention by these drugs may not be directly related to their inhibition of COXs. Other targets may be also involved in their chemopreventive activity. We have examined a variety of NSAIDs including COX-2 selective inhibitors, peroxisome proliferator-activated receptor (PPAR) gamma agonists and phytophenolic compounds which have been shown to be chemopreventive for their effect on 15-PGDH. It was found that most of these compounds were potent inhibitors of 15-PGDH. Among these compounds, ciglitazone appeared to be the most powerful inhibitor (IC(50)=2.7 microM). Inhibition by ciglitazone was non-competitive with respect to NAD(+) and uncompetitive with respect to PGE(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号