首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies on chronic myeloid leukemia (CML) have served as a paradigm for cancer research and therapy. These studies involve the identifi cation of the fi rst cancer-associated chromosomal abnormality and the subsequent development of tyrosine kinase inhibitors (TKIs) that inhibit BCR-ABL kinase activity in CML. It becomes clear that leukemia stem cells (LSCs) in CML which are resistant to TKIs, and eradication of LSCs appears to be extremely diffi cult. Therefore, one of the major issues in current CML biology is to understand the biology of LSCs and to investigate why LSCs are insensitive to TKI monotherapy for developing curative therapeutic strategies. Studies from our group and others have revealed that CML LSCs form a hierarchy similar to that seen in normal hematopoiesis, in which a rare stem cell population with limitless selfrenewal potential gives rise to progenies that lack such potential. LSCs also possess biological features that are different from those of normal hematopoietic stem cells (HSCs) and are critical for their malignant characteristics. In this review, we summarize the latest progress in CML field, and attempt to understand the molecular mechanisms of survival regulation of LSCs.  相似文献   

2.
Cancer stem cells (CSCs) are believed to be the initiating cells for many types of blood cancer and some solid tumors, and curative therapies of these cancers require eradicating CSCs. Specific targeting of CSCs but not normal stem cell counterparts is a correct strategy for developing new anti-cancer therapies, and the success of this approach relies on identification of specific target genes in CSCs. Using BCR-ABL-induced chronic myeloid leukemia (CML) as a cancer model, we recently identified arachidonate 5-lipoxygenase (5-LO) gene (Alox5) as a critical regulator for leukemia stem cells (LSCs) in CML. Without Alox5, BCR-ABL fails to induce CML in mice due to the impairments of the functions of LSCs. The lack of Alox5 does not significantly affect the functions of normal hematopoietic stem cells. In addition, Zileuton, a specific 5-LO inhibitor, also causes the impairments of the functions of LSCs in a similar manner. Our results prove the principle that CSC-specific genes that play key roles in cancer development can be identified and inhibition of these genes can lead to eradication of these cells for cure. Here, we further discuss the mechanisms of Alox5 in CML, and the use of Zileuton as a potential and promising drug in eradicating LSCs in CML and other myeloproliferative diseases. We believe that our discovery of the role of Alox5 in regulating the function of LSCs in CML reminds us of viewing CSCs at a different angel. We predict that CSCs in other types of cancer also utilize specific regulatory pathways to control their survival and self-renewal, and inhibition of these pathways profoundly suppresses CSCs but not their normal stem cell counterparts. Specific targeting of CSCs without causing significant harm to normal stem cells should be a correct direction to go in developing novel therapeutic strategies in the future.  相似文献   

3.
Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by the overproduction of granulocytes, which leads to high white blood cell counts and splenomegaly in patients. Based on clinical symptoms and laboratory findings, CML is classified into three clinical phases, often starting with a chronic phase, progressing to an accelerated phase and ultimately ending in a terminal phase called blast crisis. Blast crisis phase of CML is clinically similar to an acute leukemia; in particular, B-cell acute lymphoblastic leukemia (B-ALL) is a severe form of acute leukemia in blast crisis, and there is no effective therapy for it yet. CML is induced by the BCR-ABL oncogene, whose gene product is a BCR-ABL tyrosine kinase. Currently, inhibition of BCR-ABL kinase activity by its kinase inhibitor such as imatinib mesylate (Gleevec) is a major therapeutic strategy for CML. However, the inability of BCR-ABL kinase inhibitors to completely kill leukemia stem cells (LSCs) indicates that these kinase inhibitors are unlikely to cure CML. In addition, drug resistance due to the development of BCR-ABL mutations occurs before and during treatment of CML with kinase inhibitors. A critical issue to resolve this problem is to fully understand the biology of LSCs, and to identify key genes that play significant roles in survival and self-renewal of LSCs. In this review, we will focus on LSCs in CML by summarizing and discussing available experimental results, including the original studies from our own laboratory.  相似文献   

4.
Peng C  Chen Y  Shan Y  Zhang H  Guo Z  Li D  Li S 《PloS one》2012,7(6):e38614
A balanced pool of hematopoietic stem cells (HSCs) in bone marrow is tightly regulated, and this regulation is disturbed in hematopoietic malignancies such as chronic myeloid leukemia (CML). The underlying mechanisms are largely unknown. Here we show that the Lin(-)Sca-1(+)c-Kit(-) (LSK(-)) cell population derived from HSC-containing Lin(-)Sca-1(+)c-Kit(+) (LSK) cells has significantly higher numbers of apoptotic cells. Depletion of LSK cells by radiation or the cytotoxic chemical 5-fluorouracil results in an expansion of the LSK(-) population. In contrast, the LSK(-) population is reduced in CML mice, and depletion of leukemia stem cells (LSCs; BCR-ABL-expressing HSCs) by deleting Alox5 or by inhibiting heat shock protein 90 causes an increase in this LSK(-) population. The transition of LSK to LSK(-) cells is controlled by the Icsbp gene and its downstream gene Lyn, and regulation of this cellular transition is critical for the survival of normal LSK cells and LSCs. These results indicate a potential function of the LSK(-) cells in the regulation of LSK cells and LSCs.  相似文献   

5.
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a chromosome translocation that generates the Bcr-Abl oncogene encoding a constitutive kinase activity. Despite remarkable success in controlling CML at chronic phase by Bcr-Abl tyrosine kinase inhibitors (TKIs), a significant proportion of CML patients treated with TKIs develop drug resistance due to the inability of TKIs to kill leukemia stem cells (LSCs) that are responsible for initiation, drug resistance, and relapse of CML. Therefore, there is an urgent need for more potent and safer therapies against leukemia stem cells for curing CML. A number of LSCassociated targets and corresponding signaling pathways, including CaMKII-γ, a critical molecular switch for co-activating multiple LSC-associated signaling pathways, have been identified over the past decades and various small inhibitors targeting LSC are also under development. Increasing evidence shows that leukemia stem cells are the root of CML and targeting LSC may offer a curable treatment option for CML patients. This review summarizes the molecular biology of LSC and itsassociated targets, and the potential clinical application in chronic myeloid leukemia.  相似文献   

6.
Chronic Myeloid Leukemia (CML) is a hematopoietic stem cell malignancy that is driven by the oncogenic BCR-ABL fusion protein, and for which treatment with ABL tyrosine kinase inhibitors (TKI) has yielded great success. While this is the case, BCR-ABL leukemic stem cells can persist despite TKI therapy, and efforts have intensified towards determining the molecular pathways that are critical for the maintenance of such cells. Recent studies indicate that aberrant Hedgehog (Hh) signaling plays a crucial role in the survival of the leukemic stem cell population. The Hh pathway displays crucial roles during embryonic development, tissue regeneration and repair in adults. Several mechanisms that lead to the aberrant activation of the Hh pathway have been identified in various cancers. Here we review in detail the discovery that Hh signaling governs the maintenance of the critical leukemia initiating cells or leukemic stem cells (LSCs) in BCR-ABL-induced CML as well as discuss investigations on the role of Hh signaling in normal hematopoeisis. As inhibitors that directly target the positive Hh signal transducer Smoothened (SMO) have entered clinical trials, these findings offer a unique opportunity to potentially target the LSC population that is not eliminated with ABL tyrosine kinase inhibition therapy in CML.  相似文献   

7.
A key characteristic of hematopoietic stem cells (HSCs) is the ability to self-renew. Genetic deletion of β-catenin during fetal HSC development leads to impairment of self-renewal while β-catenin is dispensable in fully developed adult HSCs. Whether β-catenin is required for maintenance of fully developed CML leukemia stem cells (LSCs) is unknown. Here, we use a conditional mouse model to show that deletion of β-catenin after CML initiation does not lead to a significant increase in survival. However, deletion of β-catenin synergizes with imatinib (IM) to delay disease recurrence after imatinib discontinuation and to abrogate CML stem cells. These effects can be mimicked by pharmacologic inhibition of β-catenin via modulation of prostaglandin signaling. Treatment with the cyclooxygenase inhibitor indomethacin reduces β-catenin levels and leads to a reduction in LSCs. In conclusion, inhibiting β-catenin by genetic inactivation or pharmacologic modulation is an effective combination therapy with imatinib and targets CML stem cells.  相似文献   

8.
Sullivan C  Chen Y  Shan Y  Hu Y  Peng C  Zhang H  Kong L  Li S 《PloS one》2011,6(10):e26246
Hematopoiesis is a tightly regulated biological process that relies upon complicated interactions between blood cells and their microenvironment to preserve the homeostatic balance of long-term hematopoietic stem cells (LT-HSCs), short-term HSCs (ST-HSCs), multipotent progenitors (MPPs), and differentiated cells. Adhesion molecules like P-selectin (encoded by the Selp gene) are essential to hematopoiesis, and their dysregulation has been linked to leukemogenesis. Like HSCs, leukemic stem cells (LSCs) depend upon their microenvironments for survival and propagation. P-selectin plays a crucial role in Philadelphia chromosome-positive (Ph(+)) chronic myeloid leukemia (CML). In this paper, we show that cells deficient in P-selectin expression can repopulate the marrow more efficiently than wild type controls. This results from an increase in HSC self-renewal rather than alternative possibilities like increased homing velocity or cell cycle defects. We also show that P-selectin expression on LT-HSCs, but not ST-HSCs and MPPs, increases with aging. In the absence of P-selectin expression, mice at 6 months of age possess increased levels of short-term HSCs and multipotent progenitors. By 11 months of age, there is a shift towards increased levels of long-term HSCs. Recipients of BCR-ABL-transduced bone marrow cells from P-selectin-deficient donors develop a more aggressive CML, with increased percentages of LSCs and progenitors. Taken together, our data reveal that P-selectin expression on HSCs and LSCs has important functional ramifications for both hematopoiesis and leukemogenesis, which is most likely attributable to an intrinsic effect on stem cell self-renewal.  相似文献   

9.
10.
Loss of p53 function is a common feature of human cancers and it is required for differentiated tumor cell maintenance; however, it is not known whether sustained inactivation of the p53 pathway is needed for cancer stem cell persistence. Chronic myeloid leukemia (CML) is caused by a chromosome translocation that generates the BCRABL oncogene encoding a constitutively active protein tyrosine kinase. The disease originates in a hematopoietic stem cell and is maintained by leukemic stem cells (LSCs). Treatment with specific tyrosine kinase inhibitors does not eliminate LSCs because they do not depend on the oncogene for survival. We have combined a switchable p53 knock-in mouse model, p53KI/KI, with the well-characterized Sca1-BCRABLp210 CML transgenic model, to show that transient restoration of p53 slows disease progression and significantly extends the survival of leukemic animals, being the mechanism responsible for this effect, apoptotic death of primitive leukemia cells. In agreement with these in vivo findings, in vitro assays show that restoring p53 reduces hematopoietic colony formation by cells of leukemic animals. These results suggest that reestablishing p53 function may be a therapeutic strategy for the eradication of leukemic stem cells and to prevent disease progression.  相似文献   

11.
Chronic myeloid leukemia disease (CML) found effective therapy by treating patients with tyrosine kinase inhibitors (TKI), which suppress the BCR-ABL1 oncogene activity. However, the majority of patients achieving remission with TKI still have molecular evidences of disease persistence. Various mechanisms have been proposed to explain the disease persistence and recurrence. One of the hypotheses is that the primitive leukemic stem cells (LSCs) can survive in the presence of TKI. Understanding the mechanisms leading to TKI resistance of the LSCs in CML is a critical issue but is limited by availability of cells from patients. We generated induced pluripotent stem cells (iPSCs) derived from CD34+ blood cells isolated from CML patients (CML-iPSCs) as a model for studying LSCs survival in the presence of TKI and the mechanisms supporting TKI resistance. Interestingly, CML-iPSCs resisted to TKI treatment and their survival did not depend on BCR-ABL1, as for primitive LSCs. Induction of hematopoietic differentiation of CML-iPSC clones was reduced compared to normal clones. Hematopoietic progenitors obtained from iPSCs partially recovered TKI sensitivity. Notably, different CML-iPSCs obtained from the same CML patients were heterogeneous, in terms of BCR-ABL1 level and proliferation. Thus, several clones of CML-iPSCs are a powerful model to decipher all the mechanisms leading to LSC survival following TKI therapy and are a promising tool for testing new therapeutic agents.  相似文献   

12.
Chronic myeloid leukemia (CML) patients with complex chromosomal translocations as well as non-compliant CML patients often demonstrate short-lived responses and poor outcomes on the current therapeutic regimes using Imatinib and its variants. It has been derived so far that leukemic stem cells (LSCs) are responsible for Imatinib resistance and CML progression. Sonic hedgehog (Shh) signaling has been implicated in proliferation of this Imatinib-resistant CD34(+) LSCs. Our work here identifies the molecular mechanism of Shh-mediated mutation-independent Imatinib resistance that is most relevant for treating CML-variants and non-compliant patients. Our results elucidate that while Shh can impart stemness, it also upregulates expression of anti-apoptotic protein—Bcl2. It is the upregulation of Bcl2 that is involved in conferring Imatinib resistance to the CD34(+) LSCs. Sub-toxic doses of Bcl2 inhibitor or Shh inhibitor (<<IC50), when used as adjuvants along with Imatinib, can re-sensitize Shh signaling cells to Imatinib. Our work here highlights the need to molecularly stratify CML patients and implement combinatorial therapy to overcome the current limitations and improve outcomes in CML.Subject terms: Cancer therapeutic resistance, Chronic myeloid leukaemia  相似文献   

13.
Bone marrow microenvironment(BMM) is the main sanctuary of leukemic stem cells(LSCs) and protects these cells against conventional therapies. However, it may open up an opportunity to target LSCs by breaking the close connection between LSCs and the BMM. The elimination of LSCs is of high importance, since they follow cancer stem cell theory as a part of this population. Based on cancer stem cell theory, a cell with stem cell-like features stands at the apex of the hierarchy and produces a heterogeneous population and governs the disease.Secretion of cytokines, chemokines, and extracellular vesicles, whether through autocrine or paracrine mechanisms by activation of downstream signaling pathways in LSCs, favors their persistence and makes the BMM less hospitable for normal stem cells. While all details about the interactions of the BMM and LSCs remain to be elucidated, some clinical trials have been designed to limit these reciprocal interactions to cure leukemia more effectively. In this review, we focus on chronic myeloid leukemia and acute myeloid leukemia LSCs and their milieu in the bone marrow, how to segregate them from the normal compartment, and finally the possible ways to eliminate these cells.  相似文献   

14.
Relapse after current treatment is one of the main limitations to the complete cure of leukemia, and a concept that leukemia stem cell (LSC) is the major cause of relapse has been proposed. LSCs are derived from normal hematopoietic stem cells (HSCs), residing at the apex of leukemia cells and hiding in the bone marrow (BM) niche to evade chemotherapy. Novel therapy is strongly needed based on the unique features of LSCs to directly target these cells. MicroRNAs (miRNAs), a class of small non-coding RNAs, are now known to play important roles on cancer stem cell maintenance and differentiation. Because of the ability of miRNAs to inactivate either specific genes or entire gene families, strategies based on differential expression levels of miRNAs in LSCs as dominant activators or suppressors of gene activity have emerged as promising new candidate approaches for eradicating LSCs. In this review, we highlight new findings regarding the roles of miRNAs in LSC maintenance of quiescence repression, self-renewal, surface marker targeting, and the LSCBM niche interaction. We also discuss recent advances and future challenges to use LSC specific miRNAs as potential therapeutic molecules in eradicating LSCs.  相似文献   

15.
The existence of cancer stem cells has been wellestablished in acute myeloid leukemia. Initial proof of the existence of leukemia stem cells(LSCs) was accomplished by functional studies in xenograft models making use of the key features shared with normal hematopoietic stem cells(HSCs) such as the capacity of self-renewal and the ability to initiate and sustain growth of progenitors in vivo. Significant progress has also been made in identifying the phenotype and signaling pathways specific for LSCs. Therapeutically, a multitude of drugs targeting LSCs are in different phases of preclinical and clinical development. This review focuses on recent discoveries which have advanced our understanding of LSC biology and provided rational targets for development of novel therapeutic agents. One of the major challenges is how to target the selfrenewal pathways of LSCs without affecting normal HSCs significantly therefore providing an acceptable therapeutic window. Important issues pertinent to the successful design and conduct of clinical trials evaluating drugs targeting LSCs will be discussed as well.  相似文献   

16.
Acute myeloid leukemia (AML) originates from self-renewing leukemic stem cells (LSCs), an ultimate therapeutic target for AML. Recent studies have shown that many AML LSC-specific surface antigens could be such candidates. T cell immunoglobulin mucin-3 (TIM-3) is expressed on LSCs in most types of AML, except for acute promyelocytic leukemia, but not on normal hematopoietic stem cells (HSCs). In mouse models reconstituted with human AML LSCs or human hematopoietic stem cells, a human TIM-3 mouse IgG2a antibody with complement-dependent and antibody-dependent cellular cytotoxic activities eradicates AML LSCs in vivo but does not affect normal human hematopoiesis. Thus, TIM-3 is one of the promising targets to eradicate AML LSCs.  相似文献   

17.

Background

The tyrosine kinase receptor insulin-like growth factor 1 receptor (IGF-IR) contributes to the initiation and progression of many types of malignancies. We previously showed that IGF-2, which binds IGF-IR, is an extrinsic factor that supports the ex vivo expansion of hematopoietic stem cells (HSCs). We also demonstrated that IGF-IR is not required for HSC activity in vivo.

Methods and results

Here we investigated the role of IGF-IR in chronic myeloid leukemia (CML) using the retroviral BCR/ABL transplantation mouse model. Existing antibodies against IGF-IR are not suitable for flow cytometry; therefore, we generated a fusion of the human IgG Fc fragment with mutant IGF-2 that can bind to IGF-IR. We used this fusion protein to evaluate mouse primary hematopoietic populations. Through transplantation assays with IGF-IR+ and IGF-IR cells, we demonstrated that IGF-IR is expressed on all mouse HSCs. The expression of IGF-IR is much higher on CML cells than on acute lymphoblastic leukemia (ALL) cells. The depletion of IGF-IR expression in BCR/ABL+ cells led to the development of ALL (mostly T cell ALL) but not CML. Lack of IGF-IR resulted in decreased self-renewal of the BCR/ABL+ CML cells in the serial replating assay.

Conclusion

IGF-IR regulates the cell fate determination of BCR/ABL+ leukemia cells and supports the self-renewal of CML cells.  相似文献   

18.
19.
Bmi1 is required for efficient self-renewal of hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs). In this study, we investigated whether leukemia-associated fusion proteins, which differ in their ability to activate Hox expression, could initiate leukemia in the absence of Bmi1. AML1-ETO and PLZF-RARα, which do not activate Hox, triggered senescence in Bmi1(-/-) cells. In contrast, MLL-AF9, which drives expression of Hoxa7 and Hoxa9, readily transformed Bmi1(-/-) cells. MLL-AF9 could not initiate leukemia in Bmi1(-/-)Hoxa9(-/-) mice, which have further compromised HSC functions. But either gene could restore the ability of MLL-AF9 to establish LSCs in the double null background. As reported for Bmi1, Hoxa9 regulates expression of p16(Ink4a)/p19(ARF) locus and could overcome senescence induced by AML1-ETO. Together, these results reveal an important functional interplay between MLL/Hox and Bmi1 in regulating cellular senescence for LSC development, suggesting that a synergistic targeting of both molecules is required to eradicate a broader spectrum of LSCs.  相似文献   

20.
Leukemia stem cells (LSCs) have critical functions in acute leukemia (AL) pathogenesis, participating in its initiation and relapse. Thus, identifying new molecules to eradicate LSCs represents a high priority for AL management. This work identified E35, a novel Emodin derivative, which strongly inhibited growth and enhanced apoptosis of AL stem cell lines, and primary stem and progenitor cells from AL cases, while sparing normal hematopoietic cells. Furthermore, functional assays in cultured cells and animals suggested that E35 preferentially ablated primitive leukemia cell populations without impairing their normal counterparts. Moreover, molecular studies showed that E35 remarkably downregulated drug-resistant gene and dramatically inhibited the Akt/mammalian target of rapamycin signaling pathway. Notably, the in vivo anti-LSC activity of E35 was further confirmed in murine xenotransplantation models. Collectively, these findings indicate E35 constitutes a novel therapeutic candidate for AL, potentially targeting leukemia stem and progenitor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号