共查询到20条相似文献,搜索用时 0 毫秒
1.
Our recent studies demonstrate that SPAK (Ste20p-related Proline Alanine-rich Kinase), in combination with WNK4 [With No lysine (K) kinase], phosphorylates and stimulates the Na-K-2Cl cotransporter (NKCC1), whereas catalytically inactive SPAK (K104R) fails to activate the cotransporter. The catalytic domain of SPAK contains an activation loop between the well-conserved DFG and APE motifs. We speculated that four threonine residues (T231, T236, T243, and T247) in the activation loop might be sites of phosphorylation and kinase activation; therefore, we mutated each residue into an alanine. In this report, we demonstrate that coexpression of SPAK (T243A) or SPAK (T247A) with WNK4 not only prevented, but robustly inhibited, cotransporter activity in NKCC1-injected Xenopus laevis oocytes. These activation loop mutations produced an effect similar to that of the SPAK (K104R) mutant. In vitro phosphorylation experiments demonstrate that both intramolecular autophosphorylation of SPAK and phosphorylation of NKCC1 are significantly stronger in the presence of Mn2+ rather than Mg2+. We also show that SPAK activity is markedly inhibited by staurosporine and K252a, partially inhibited by N-ethylmaleimide and diamide, and unaffected by arsenite. OSR1, a kinase closely related to SPAK, exhibited similar kinase properties and similar functional activation of NKCC1 when coexpressed with WNK4. 相似文献
2.
WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1 总被引:1,自引:0,他引:1
Moriguchi T Urushiyama S Hisamoto N Iemura S Uchida S Natsume T Matsumoto K Shibuya H 《The Journal of biological chemistry》2005,280(52):42685-42693
The WNK1 and WNK4 genes have been found to be mutated in some patients with hyperkalemia and hypertension caused by pseudohypoaldosteronism type II. The clue to the pathophysiology of pseudohypoaldosteronism type II was its striking therapeutic response to thiazide diuretics, which are known to block the sodium chloride cotransporter (NCC). Although this suggests a role for WNK1 in hypertension, the precise molecular mechanisms are largely unknown. Here we have shown that WNK1 phosphorylates and regulates the STE20-related kinases, Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). WNK1 was observed to phosphorylate the evolutionary conserved serine residue located outside the kinase domains of SPAK and OSR1, and mutation of the OSR1 serine residue caused enhanced OSR1 kinase activity. In addition, hypotonic stress was shown to activate SPAK and OSR1 and induce phosphorylation of the conserved OSR1 serine residue, suggesting that WNK1 may be an activator of the SPAK and OSR1 kinases. Moreover, SPAK and OSR1 were found to directly phosphorylate the N-terminal regulatory regions of cation-chloride-coupled cotransporters including NKCC1, NKCC2, and NCC. Phosphorylation of NCC was induced by hypotonic stress in cells. These results suggested that WNK1 and SPAK/OSR1 mediate the hypotonic stress signaling pathway to the transporters and may provide insights into the mechanisms by which WNK1 regulates ion balance. 相似文献
3.
4.
Filippi BM de los Heros P Mehellou Y Navratilova I Gourlay R Deak M Plater L Toth R Zeqiraj E Alessi DR 《The EMBO journal》2011,30(9):1730-1741
Mouse protein-25 (MO25) isoforms bind to the STRAD pseudokinase and stabilise it in a conformation that can activate the LKB1 tumour suppressor kinase. We demonstrate that by binding to several STE20 family kinases, MO25 has roles beyond controlling LKB1. These new MO25 targets are SPAK/OSR1 kinases, regulators of ion homeostasis and blood pressure, and MST3/MST4/YSK1, involved in controlling development and morphogenesis. Our analyses suggest that MO25α and MO25β associate with these STE20 kinases in a similar manner to STRAD. MO25 isoforms induce approximately 100-fold activation of SPAK/OSR1 dramatically enhancing their ability to phosphorylate the ion cotransporters NKCC1, NKCC2 and NCC, leading to the identification of several new phosphorylation sites. siRNA-mediated reduction of expression of MO25 isoforms in mammalian cells inhibited phosphorylation of endogenous NKCC1 at residues phosphorylated by SPAK/OSR1, which is rescued by re-expression of MO25α. MO25α/β binding to MST3/MST4/YSK1 also stimulated kinase activity three- to four-fold. MO25 has evolved as a key regulator of a group of STE20 kinases and may represent an ancestral mechanism of regulating conformation of pseudokinases and activating catalytically competent protein kinases. 相似文献
5.
Since the discovery of an interaction between membrane transport proteins and the mammalian STE20 (sterile 20)-like kinases SPAK (STE20/SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase-1), a significant body of work has been performed probing the molecular physiology of these two kinases. To date, the function of SPAK and OSR1 is probably the best known of all mammalian kinases of the STE20 family. As they regulate by direct phosphorylation key ion transport mechanisms involved in fluid and ion homoeostasis, SPAK and OSR1 constitute key end-of-pathway effectors. Their significance in such fundamental functions as ion homoeostasis and cell volume control is evidenced by the evolutionary pressure that resulted in the duplication of the OSR1 gene in higher vertebrates. This review examines the distribution of these two kinases in the animal kingdom and tissue expression within a single organism. It also describes the main molecular features of these two kinases with emphasis on the interacting domain located at their extreme C-terminus. A large portion of the present review is devoted to the extensive biochemical and physiological studies that have resulted in our current understanding of SPAK/OSR1 function. Finally, as our understanding is a work in progress, we also identify unresolved questions and controversies that warrant further investigation. 相似文献
6.
P. Richard Grimm Tarvinder K. Taneja Jie Liu Richard Coleman Yang-Yi Chen Eric Delpire James B. Wade Paul A. Welling 《The Journal of biological chemistry》2012,287(45):37673-37690
STE20/SPS-1-related proline-alanine-rich protein kinase (SPAK) and oxidative stress-related kinase (OSR1) activate the potassium-dependent sodium-chloride co-transporter, NKCC2, and thiazide-sensitive sodium-chloride cotransporter, NCC, in vitro, and both co-localize with a kinase regulatory molecule, Cab39/MO25α, at the apical membrane of the thick ascending limb (TAL) and distal convoluted tubule (DCT). Yet genetic ablation of SPAK in mice causes a selective loss of NCC function, whereas NKCC2 becomes hyperphosphorylated. Here, we explore the underlying mechanisms in wild-type and SPAK-null mice. Unlike in the DCT, OSR1 remains at the TAL apical membrane of KO mice where it is accompanied by an increase in the active, phosphorylated form of AMP-activated kinase. We found an alterative SPAK isoform (putative SPAK2 form), which modestly inhibits co-transporter activity in vitro, is more abundant in the medulla than the cortex. Thus, enhanced NKCC2 phosphorylation in the SPAK knock-out may be explained by removal of inhibitory SPAK2, sustained activity of OSR1, and activation of other kinases. By contrast, the OSR1/SPAK/M025α signaling apparatus is disrupted in the DCT. OSR1 becomes largely inactive and displaced from M025α and NCC at the apical membrane, and redistributes to dense punctate structures, containing WNK1, within the cytoplasm. These changes are paralleled by a decrease in NCC phosphorylation and a decrease in the mass of the distal convoluted tubule, exclusive to DCT1. As a result of the dependent nature of OSR1 on SPAK in the DCT, NCC is unable to be activated. Consequently, SPAK−/− mice are highly sensitive to dietary salt restriction, displaying prolonged negative sodium balance and hypotension. 相似文献
7.
Desagher S Osen-Sand A Montessuit S Magnenat E Vilbois F Hochmann A Journot L Antonsson B Martinou JC 《Molecular cell》2001,8(3):601-611
Bid plays an essential role in Fas-mediated apoptosis of the so-called type II cells. In these cells, following cleavage by caspase 8, the C-terminal fragment of Bid translocates to mitochondria and triggers the release of apoptogenic factors, thereby inducing cell death. Here we report that Bid is phosphorylated by casein kinase I (CKI) and casein kinase II (CKII). Inhibition of CKI and CKII accelerated Fas-mediated apoptosis and Bid cleavage, whereas hyperactivity of the kinases delayed apoptosis. When phosphorylated, Bid was insensitive to caspase 8 cleavage in vitro. Moreover, a mutant of Bid that cannot be phosphorylated was found to be more toxic than wild-type Bid. Together, these data indicate that phosphorylation of Bid represents a new mechanism whereby cells control apoptosis. 相似文献
8.
Abeer Abousaab Jamshed Warsi Bernat Elvira Ioana Alesutan Zohreh Hoseinzadeh Florian Lang 《The Journal of membrane biology》2015,248(6):1107-1119
SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) are cell volume-sensitive kinases regulated by WNK (with-no-K[Lys]) kinases. SPAK/OSR1 regulate several channels and carriers. SPAK/OSR1 sensitive functions include neuronal excitability. Orchestration of neuronal excitation involves the excitatory glutamate transporters EAAT1 and EAAT2. Sensitivity of those carriers to SPAK/OSR1 has never been shown. The present study thus explored whether SPAK and/or OSR1 contribute to the regulation of EAAT1 and/or EAAT2. To this end, cRNA encoding EAAT1 or EAAT2 was injected into Xenopus oocytes without or with additional injection of cRNA encoding wild-type SPAK or wild-type OSR1, constitutively active T233ESPAK, WNK insensitive T233ASPAK, catalytically inactive D212ASPAK, constitutively active T185EOSR1, WNK insensitive T185AOSR1 or catalytically inactive D164AOSR1. The glutamate (2 mM)-induced inward current (I Glu) was taken as a measure of glutamate transport. As a result, I Glu was observed in EAAT1- and in EAAT2-expressing oocytes but not in water-injected oocytes, and was significantly decreased by coexpression of SPAK and OSR1. As shown for EAAT2, SPAK, and OSR1 decreased significantly the maximal transport rate but significantly enhanced the affinity of the carrier. The effect of wild-type SPAK/OSR1 on EAAT1 and EAAT2 was mimicked by T233ESPAK and T185EOSR1, but not by T233ASPAK, D212ASPAK, T185AOSR1, or D164AOSR1. Coexpression of either SPAK or OSR1 decreased the EAAT2 protein abundance in the cell membrane of EAAT2-expressing oocytes. In conclusion, SPAK and OSR1 are powerful negative regulators of the excitatory glutamate transporters EAAT1 and EAAT2. 相似文献
9.
Cells respond to stress stimuli by mounting specific responses. During osmotic and oxidative stress, cation chloride cotransporters, e.g. Na-K-2Cl and K-Cl cotransporters, are activated to maintain fluid/ion homeostasis. Here we report the interaction of the stress-related serine-threonine kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1) with the cotransporters KCC3, NKCC1, and NKCC2 but not KCC1 and KCC4. The interaction was identified using yeast two-hybrid assays and confirmed via glutathione S-transferase pull-down experiments. Evidence for in vivo interaction was established by co-immunoprecipitation of SPAK from mouse brain with anti-NKCC1 antibody. The interacting region of both kinases comprises the last 100 amino acids of the protein. The SPAK/OSR1 binding motif on the cotransporters consists of nine residues, starting with an (R/K)FX(V/I) sequence followed by five additional residues that are essential for binding but for which no consensus was found. Immunohistochemical analysis of choroid plexus epithelium revealed co-expression of NKCC1 and SPAK on the apical membrane. In contrast, in choroid plexus epithelium from NKCC1 null mice, SPAK immunostaining was found in the cytoplasm. We conclude that several cation chloride co-transporters interact with SPAK and/or OSR1, and we hypothesize that this interaction might play a role during the initiation of the cellular stress response. 相似文献
10.
11.
SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation 总被引:1,自引:0,他引:1
Thastrup JO Rafiqi FH Vitari AC Pozo-Guisado E Deak M Mehellou Y Alessi DR 《The Biochemical journal》2012,441(1):325-337
Mutations in the WNK [with no lysine (K) kinase] family instigate hypertension and pain perception disorders. Of the four WNK isoforms, much of the focus has been on WNK1, which is activated in response to osmotic stress by phosphorylation of its T-loop residue (Ser382). WNK isoforms phosphorylate and activate the related SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) protein kinases. In the present study, we first describe the generation of double-knockin ES (embryonic stem) cells, where SPAK and OSR1 cannot be activated by WNK1. We establish that NKCC1 (Na+/K+/2Cl- co-transporter 1), a proposed target of the WNK pathway, is not phosphorylated or activated in a knockin that is deficient in SPAK/OSR1 activity. We also observe that activity of WNK1 and WNK3 are markedly elevated in the knockin cells, demonstrating that SPAK/OSR1 significantly influences WNK activity. Phosphorylation of another regulatory serine residue, Ser1261, in WNK1 is unaffected in knockin cells, indicating that this is not phosphorylated by SPAK/OSR1. We show that WNK isoforms interact via a C-terminal CCD (coiled-coil domain) and identify point mutations of conserved residues within this domain that ablate the ability of WNK isoforms to interact. Employing these mutants, we demonstrate that interaction of WNK isoforms is not essential for their T-loop phosphorylation and activation, at least for overexpressed WNK isoforms. Moreover, we finally establish that full-length WNK1, WNK2 and WNK3, but not WNK4, are capable of directly phosphorylating Ser382 of WNK1 in vitro. This supports the notion that T-loop phosphorylation of WNK isoforms is controlled by trans-autophosphorylation. These results provide novel insights into the WNK signal transduction pathway and provide genetic evidence confirming the essential role that SPAK/OSR1 play in controlling NKCC1 function. They also reveal a role in which the downstream SPAK/OSR1 enzymes markedly influence the activity of the upstream WNK activators. The knockin ES cells lacking SPAK/OSR1 activity will be useful in validating new targets of the WNK signalling pathway. 相似文献
12.
Cyclin Y, a membrane associated cyclin, is capable of binding and activating CDK14. Here we report that human cyclin Y (CCNY) is a phosphoprotein in vivo and that phosphorylation of CCNY by CDK14 triggers its ubiquitination and degradation. Inactivation of either CDK14 or Cul1 results in accumulation of CCNY. An in vivo and in vitro mapping of CCNY phosphorylation sites by mass spectrometry revealed that the flanking regions of the conserved cyclin box are heavily phosphorylated. Phosphorylation of CCNY at Serines 71 and 73 creates a putative phospho-degron that controls its association with an SCF complex. Mutation of serine to alanine at these two sites stabilized CCNY and enhanced the activity of CCNY/CDK14 on phosphorylation of LRP6. Our results provide insight into autoregulation of the cyclin Y/CDK14 pair in CDK14 activation and cyclin Y turnover which is a process that is involved in membrane proximal signaling. 相似文献
13.
Filamin and vinculin from chicken gizzards were significantly phosphorylated in vitro by casein kinases 1 and 2, but not by alpha-actinin. Antisera raised against these actin-binding proteins immunoprecipitated the phosphorylated proteins corresponding to filamin and vinculin, but no phosphoprotein corresponding to alpha-actinin was detected. These results suggest that filamin and vinculin are phosphorylated in vivo but alpha-actinin is not. 相似文献
14.
《Cell cycle (Georgetown, Tex.)》2013,12(23):4083-4089
Cell division in eukaryotes depends on a fine control of the dynamic changes of microtubules. Nucleolar and spindle-associated protein (NuSAP) is a microtubule-binding and -bundling protein essential for the integrity of the anaphase spindle and cell division. NuSAP contains two consensus cdk phosphorylation sites in its microtubule-binding domain. Here we show NuSAP is phosphorylated by cdk1 in early mitosis. This phosphorylation inhibits the binding of NuSAP to microtubules. During metaphase-to anaphase transition, NuSAP is dephosphorylated to promote spindle midzone formation and cell cycle progression. Expression of cdk1 phosphorylation-null mutant causes extensive bundling of microtubules in the prometaphase spindle. Our results suggest that phosphorylation and dephosphorylation of NuSAP during progression of mitosis regulate spindle organization through modulation of the dynamics of microtubules. 相似文献
15.
Drévillon L Tanguy G Hinzpeter A Arous N de Becdelièvre A Aissat A Tarze A Goossens M Fanen P 《PloS one》2011,6(3):e18334
The CFTR (cystic fibrosis transmembrane conductance regulator) protein is a large polytopic protein whose biogenesis is inefficient. To better understand the regulation of CFTR processing and trafficking, we conducted a genetic screen that identified COMMD1 as a new CFTR partner. COMMD1 is a protein associated with multiple cellular pathways, including the regulation of hepatic copper excretion, sodium uptake through interaction with ENaC (epithelial sodium channel) and NF-kappaB signaling. In this study, we show that COMMD1 interacts with CFTR in cells expressing both proteins endogenously. This interaction promotes CFTR cell surface expression as assessed by biotinylation experiments in heterologously expressing cells through regulation of CFTR ubiquitination. In summary, our data demonstrate that CFTR is protected from ubiquitination by COMMD1, which sustains CFTR expression at the plasma membrane. Thus, increasing COMMD1 expression may provide an approach to simultaneously inhibit ENaC absorption and enhance CFTR trafficking, two major issues in cystic fibrosis. 相似文献
16.
How can a constitutively active 'master' kinase with numerous downstream targets preferentially phosphorylate one or more of these without influencing all simultaneously? How might such a system be switched off? The characterization of the role of deubiquitination in regulating the phosphorylation and activation of AMPK (AMP-activated protein kinase)-related kinases by LKB1 suggests a novel and interesting mechanism for conferring signal transduction specificity and control at the kinase substrate level. In this issue of the Biochemical Journal, Al-Hakim et al. show that the AMPK-related kinases NUAK1 (AMPK-related kinase 5) and MARK4 (microtubule-affinity-regulating kinase 4) are polyubiquitinated in vivo and that they serve as substrates of the deubiquitinating enzyme USP9X; furthermore, the first evidence is provided for regulation of AMPK-related kinase family members mediated via unusual Lys(29)/Lys(33) polyubiquitin chains, rather than the more common Lys(48)/Lys(63) linkages. 相似文献
17.
Y-27632, an inhibitor of the Rho-associated kinase ROCK, is a therapeutic lead for Huntington disease (HD). The downstream targets that mediate its inhibitory effects on huntingtin (Htt) aggregation and toxicity are unknown. We have identified profilin, a small actin-binding factor that also interacts with Htt, as being a direct target of the ROCK1 isoform. The overexpression of profilin reduces the aggregation of polyglutamine-expanded Htt and androgen receptor (AR) peptides. This requires profilin's G-actin binding activity and its direct interaction with Htt, which are both inhibited by the ROCK1-mediated phosphorylation of profilin at Ser-137. Y-27632 blocks the phosphorylation of profilin in HEK293 cells and primary neurons, which maintains profilin in an active state. The knockdown of profilin blocks the inhibitory effect of Y-27632 on both AR and Htt aggregation. A signaling pathway from ROCK1 to profilin thus controls polyglutamine protein aggregation and is targeted by a promising therapeutic lead for HD. 相似文献
18.
19.
Two key components of mammalian heterochromatin that play a structural role in higher order chromatin organization are the heterochromatin protein 1alpha (HP1alpha) and the linker histone H1. Here, we show that these proteins interact in vivo and in vitro through their hinge and C-terminal domains, respectively. The phosphorylation of H1 by CDK2, which is required for efficient cell cycle progression, disrupts this interaction. We propose that phosphorylation of H1 provides a signal for the disassembly of higher order chromatin structures during interphase, independent of histone H3-lysine 9 (H3-K9) methylation, by reducing the affinity of HP1alpha for heterochromatin. 相似文献